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APPENDIX: MATHEMATICAL INDUCTION AND OTHER FORMS OF PROOF
When you are done with your homework you should be able to...

n Use the Principle of Mathematical Induction to prove statements involving a
positive integer n

n Prove by contradiction that a mathematical statement is true

n Use a counterexample to show that a mathematical statement is false

Mathematical Induction

Mathematical Induction is a method of mathematical Prog; used to

establish a given statement for all n&-\’u\’&Q numbers. 1t is a form of

(’I(LCI*' proof. It is done in (2 steps. The first step, known as the

bosob case, is to prove the given statement for the first natural number.

The second step, known as the |ndMC+I V& step, is to prove that the

given statement for any one natural number 'lmr)lt_s the given statement
for the next natural number.

The Principle of Mathematical Induction

Let P, be a statement involving the positive integer n. If

1. P is true, and

2. for every _PO%KHVA- integer k, the truth of [ Kk implies the truth

of ?K ) then the statement P, must be true for all positive

}nteqe_rs n.
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Example 1: Use mathematical induction to prove the formula for every positive

integer n.
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v jndum\m 3Tep g 3
@Ba.s( tase +|ﬁ3 : g (Ex S w b (kt1)
S, - Prory e R T S e
3

S-r S S%—(K%’D

» (1Y) [ 6@1)

\ 2 ,—-'-'"q—""' K+ L 4 | - L‘

) .

=" (KH)[K-H)H] (IC+I7 [ﬁa)(u;)]

_’_//_

=\
S0 S, 15 T K}D(Kﬂ) (JLH) ‘f

1-]
3
-n (rH—l)
LS ez’ PSR g

CREATED BY SHANNON MARTIN GRACEY 2



PROOF BY CONTRADICTION

In mathematical logic, proof by contradiction is described by the following
equivalence:

_Limpliesq'_if and only if not. QL_ implies nat ‘P .

One way to prove that _OL_ is a true statement is to assume that { is _h¢ true.

IT this leads you to a statement that you know is ;Pds.e/ , then you have

proved that q must be ‘\SMA.L

Example 2: Use proof by contradiction to prove the statgr/nent.

J A~ T
W
a. If @ and b are real numbers and 1<a<Db, then E>B-

Troof: Sugenan 2 2% Tan @b (L) ¢ ok (L) s

b < & /J/]'WO dontradicfs |<& ¢ L, . bj F(G'OJC bj Corndre -
dch@ﬂ/ i)-‘-i- OED

b. If & is a real number and 0<a <1, then a°<a.

RrooF - Smﬂoo:se azo . Then 2 S X .w\’\'\ckﬁiww UAR

* — G

a2\ whieh ontadics g<as 1. . by proof %7 conhradichion,
ot QX
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USING COUNTEREXAMPLES
Example 3: Use a counterexample to show that the statement is false.

a. The product of two irrational numbers is irrational.

A7 15 irrafioml and BZ)AZ) = 2 whichis yabienad
S0 ’nu s Hadumand 15 5"&@0{ )

b. If f isa polynomial function and f (@)= f(b), then a=b.
i) - %1. '3 @ polynemial Fundion | £(2) =4 and
FEV =y bt 27 -2, 50 e shhement is fafee
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Section 1.1: INTRODUCTION TO SYSTEMS OF LINEAR EQUATIONS
When you are done with your homework you should be able to...

Recognize a linear equation in n variables
Find a parametric representation of a solution set
Determine whether a system of linear equations is consistent of inconsistent

Use back-substitution and Gaussian elimination to solve a system of linear
equations

a3 a a 3a

WARM-UP: Solve the system.

a.

—x+8y=3 K, %(‘)%)%

DS
4y=2 , 6361'% hao iholepmd.ud- |
j/50\63—e,d fn i.z_ ohd SWbJﬂ“&‘O Lg 'Qiu ;WP)M H—.JS i CO'\SIS&M

)

Az ~xfé?(%:)5’5) Sﬂfé&”m \_/

- %
% = |
b.
3+ y-@2=-4 row-ochadon form
—2y+4i= 0
z=-1

Y

*29’:‘5(.)50
y =-2 g("/’% ’l)é) Lenoiofend SYstem
N 9»5-(»2))’(.7;"4 with mdz.pmdmi QCZWW

I
/"-—F——_

x=")
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DEFINITION OF A LINEAR EQUATION IN n VARIABLES

A linear equation in n variables _X Xy, oo, X has the form

Ayt 86 FaX, bt G X = b

The Coz%ﬁcf@d’ﬁ a,8,,8;...,a,are _yoall numbers, and the
COnS‘)?iJNI‘ term b is a real number. The number @, is the

Seadina Cozﬂ:fu'm‘]' ,and ¥, is the leading
variable.

*Linear equations have no ?rodqci's or Y’Ocﬂ's of variables and
no variables involved in hmcmdu&ﬁzq functions.

Example 1: Give an example of a linear equation in three variables.

7(1'}'5)(2.'%)"’(3 =17

SOLUTIONS AND SOLUTION SETS

A solution of a linear equation in n variables is a SQ@MMICL of n
real numbers S;,S,,3;,...,S,arranged to satisfy the equation when you substitute
the values

’)4,351 )'XZ.: SZ;XGZSB)"') )(‘nzsn..

into the equation. The set of Q,Q«Q solutions of a linear equation is called its

\rolwhm Sef , and when you have found this set, you have

ng\-’pjci-eo(. the equation. To describe the entire solution set of a

linear equation, use a ‘pa{ahm ‘h’i C representation.
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Example 2: Solve the linear equation X, +X, =10,

o Z,7 Vot %o g LeR
x2”
% =10-t

Example 3: Solve the linear equation 2%, — X, +5X; =-1.
LA, =%, 7S Ky \
KX, = %“Lg_'— %_’X‘ﬁ _‘L

}

lek %2 S, W=t

SYSTEMS OF LINEAR EQUATIONS IN n VARIABLES

A system of linear equations in n variables is a set of m equations, each of which is
linear in the same n variables.

A X tanX, HaX, +---a, X, =
Ay X 85X, A Xy + -8, X = bz

Ay X, + Ay X, +Agp X3 +---85, X, =D,

A Xp + X, T A X o -a X, = bm

SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS

A solution of a system of linear equations is a S-LGLW of
numbers S,S,,3;,...,5,that is a solution of each of the linear equations in the

SuSTe
J
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Example 4: Graph the following linear systems and determine th% solution(s), if a

solution exists. Ve vt g
(6)*")2 L' g> \\
a. N N
x—y =12
ry=2 (V) (0,2)
- / \D N\ @’ X
— \}'k I' -
g(-]f%)s )
__ N
Consiskant
dnd indaperdent jee
i\‘f/ 2
=¥ N '
b A9 E
x—y=12 0 -2
Jx_yzz (3,1 (0,-2)
3 3?- X—2 S\B X
/———\*__ [
¢ %3 % inconsistant :
and iﬂdﬂf?md%.j’ ' 71G
9
C Lot
x— y=12
2x—-2y =24
—_— ﬁ
I —

% (Fx'/b)' xﬁj 6&/) x_,ﬂ:\z,g A X
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NUMBER OF SOLUTIONS OF A SYSTEM OF EQUATIONS

For a system of linear equations, precisely one of the following is true.

1. The system has ﬂmdﬁﬁ N~ solution.
( Conﬁ \ 5‘3”%& system),
2. The systemhas (N :Rn\ )I'Qg‘-é, Y\'\a‘}n_k//) solutions

( (‘D’thSJf U'd, system)

3. The system has 10O 5010\5”% ( ‘hﬁo’héfgrozfd’ system).

OPERATIONS THAT PRODUCE EQUIVALENT SYSTEMS

Each of the following operations on a system of linear equations produces an

XQ&EV“}OYJ- system.

1. Ao{ OL two equations.
2. /‘/]upiltﬂ{)fﬂ an equation by a _nanzZ&i o constant.
3. Add a mlAH’iplL of an equation to ot han”
equation.
The idea is to get the systeminto 4w -0C oN form.

A X+, X, +a3X; = bl
Ay X, +8y3X3 = bz

Az Xy = b3
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Example 5: Solve the system of linear equations.

—X1+%X2= K;
4x, + X,=0 K-'z..
‘L-(pﬁq‘l'ﬂz_":’izz
Zx,t g% 7O ity Ux, #x,7©
0O man X,z2-X2
O 7 O 50\0«4“’“0 4
_ et X, = -yt
b | %=t %= W, e’
X — X+ X, =2 R, - -
—X, + 3X,—2 X%, =8 Ko ‘j:ofm
4%+ X, =4 K@, Me”‘
v (# ~ e, (Lo’ v 300"
L=ty X)Xy ¥x5 22 ) ‘D%)
’)(J X, \"X? =L @’ %( Xy ‘}Lf (36{*
iy, px, =4 P | oo >3
—x, ¥3x,-2x, ~ 3 s o
4 z 2!
\],Zﬂ' KB-»{L.S %,3'%)142,7' %;XS 2,
.-——._.——..—.-__ —
X,-X, ¥x, = 2 L %(-%,ﬂ%;%)g
e, % OO(\DUM_J

X, X,
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C.
SX, — 3X, +2%X;=3
2% + A%, — X, =7
X, —11X, + 4%, =3

. ________________________________________________________________________________________________________|
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Section 1.2: GAUSSIAN ELIMINATION AND GAUSS-JORDAN ELIMINATION
When you are done with your homework you should be able to...

n Determine the size of a matrix and write an augmented or coefficient
matrix from a system of linear equations

n Use matrices and Gaussian elimination with back-substitution to solve a
system of linear equations

n Use matrices and Gauss-Jordan elimination to solve a system of linear
equations

n  Solve a homogeneous system of linear equations

TYPES OF SOLUTIONS

2 Equations, 2 Variables

Parallel Lines Intersecting Lines Coincident Lines

y=mxt+ b
i ¥
/
L)

No points in commaen. One point in common. Infinitely many peints in cemmon.
Solution: Solution: {x, ¥) Solution: {(x, ¥): ¥ = mx+ b}

3 Equations, 3 Variables

Inconsistent Systems

No simultaneous solution,

" X

Dependent Systems

A
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DEFINITION OF A MATRIX

If m and n are positive integers, an mxn matrix (read _mn b‘;) n. ) matrix

is a T.CC“'M&UJ&I array

d, ap &,
A _ a‘21 a.22 a2n
_aml am2 amn ]
in which each __g,h"‘rj , &, of the matrix is a number. An mxn matrix has

m rows and n columns. Matrices are usually denoted by c,wpﬂ’a.ﬂ..
letters.

*The entry &;is located in the ith row and the jth column. The index i is called

the VOW __SU\.bSCr;w)‘i' because it identifies the row in which the
entry lies, and the index j is called the _ (o |uhnin. swb €C (I.?_‘i'

because it identifies the column in which the entry lies.

*xA matrix with m rows and n columns is said to be of S1ZL mx n.

When WA Z*R . the matrix is called S guaf2- of order n and the
entries @;4,d,,,d4,,...are called the mcwn dla.gbn.ﬁl entries.
(v 2 3 A s 3;(3} AS S%uar—caf'd(dd 3
A= UG ¢ . -6
AV, AL, °
1419
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Example 1: Consider the system of equations we solved in 1.1.

X, — 3X, +2X%X; =3
2% 4+ 44X, — X, =7
X, —11X, + 4%, =3

a. What is the coefficient matrix? What is the size of the coefficient matrix?

5 -3 2
Az 4 -
L1 -n A

Ais 2X3

b. What is the augmented matrix?

7 4-1 |7

6-3 2|3 |

-0 Yy

o

<
o
=

o =

NORMAL FLOAT AUTO REAL RADIAN MP m
2. ¢

NAMES MATH
MECA] 3x3

2:[B]

3:[C]

4:[D]

S8:TF1

NORMAL FLOAT AUTO REAL RADIAN MP

NAMES [uhls) EDIT

8M™Matrrlist(
10 .1923076923 0 9:Listrmatr(
0 1 -.3461538462 0 @:cumSum(
............. 009....9...1 RAref(
Ins)Frac %ﬂrre;( (
2 ‘rowSwap
19 zg 0 D: row+(
01 -%0 E:xrow(
00 0 1 F:%rowt+(

-—{g , inconsisient susfml

ELEMENTARY ROW OPERATIONS

1. Add two rows.

2. MMH' ! 'plnj arow by a__Inen 2240 constant.

3. Add - Mg@@b-% of arowto  gumethel row.
4. :]:w\'.orc)nomae. (Sv2oP ) any 2 rows.

CREATED BY SHANNON MARTIN GRACEY
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ROW-ECHELON FORM AND REDUCED ROW-ECHELON FORM

A matrix in raw'gdu.low form has the following
properties.
1. Any rows consisting entirely of ?‘A/OS occur at the bottom of the
matrix.

2. For each row that does not consist entirely of zeros, the first nonzero entry

IS | (called a leading | ).

3. For two successive nonzero rows, the leading 1 in the higher row is farther
to the ris.kk than the leading 1 in the lower row.

A matrix in row-echelon form is in nduud yow -ec}\dor\- form
when every column that has a leading 1 has =« 0S in every position
above and below its leading 1.

GAUSSIAN ELIMINATION WITH BACK SUBSTITUTION

1. Write the a\uqmt\*!,dl matrix of the system of linear
equations. v

2. Use elementary row operations to _@ng‘L the matrix in row-
echelon form.

3. Write the system of linear equations corresponding to the matrix in

_raw-zohdon form, and use back substitution to find the
solution.




Example 2: Solve the system using Gaussian elimination with back substitution.
SX, — 3X, +2%X;=3
2% 4+ 44X, — X, =7
X, —11X, + 4%, =3
.-5 -3 L 3 -
2 4|1
| -0 S y

1—2.23 HR, 7R

5 -3 7.)3—‘
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Example 3: Solve the system using Gauss-Jordan elimination.

X, *+X,—9%; =3
X, —-2X, =1
2% —X,— X, =0

) 1 -6\ 3 R o -2\
| o -2) ) e 4 o\ "3 2
2-V-1( © LO o 010

) % ’Zx s)-—'bx = | +2¢€
"x 3,{,7_—->x 2+5%t

L L—x BT Tk < EAR P PR ]

| 0 -2
o1 -3
o-13%"
v
(‘;}234 K'.)

1 © -2\
0 l-3\1
00 010
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HOMOGENEOUS SYSTEMS OF LINEAR EQUATIONS

Systems of equations in which each of the _ CON 5M terms is zero are
called homoqmm . A homogeneous system of m equations in n
variables has thgform

A X FapX, Fa Xy + -8, X, =0
Ay X T X, Ay Xy+ordy X = 0
Ay X T 85X, Qg X3+ X, = 0

a. X Fa X, +a X, +---a X =0

**Homogenous linear systems either have the "h'.l vial solution, or
N |h|1’ﬁ|\4 mwl'\j solutions
Example 4: Solve the homogeneous linear system corresponding to the given
coefficient matrix. — —_—
10 0 0 9hv.ld‘¢d [l o O o‘ ] x'zoixz:..s
0110 modriv. ' L %378, X7k,
leb X2 5, X7
X =0 v e ¢ R
'y X - —
X, ¥, = 0-9X,*~3

THEOREM 1.1: THE NUMBER OF SOLUTIONS OF A HOMOGENEOUS
SYSTEM

Every homogeneous system of linear equations is COﬂSiS‘f&\A‘ . IT the

system has fewer equations than variables, then it must have in{im 'l"cflj

MNaN solutions.
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Section 1.3: APPLICATIONS OF SYSTEMS OF LINEAR EQUATIONS
When you are done with your homework you should be able to...

n Set up and solve a system of equations to fit a polynomial function to a set

of data points
n Set up and solve a system of equations to represent a network

POLYNOMIAL CURVE FITTING
Suppose n points in the xy-plane

(4,,9.), (£2,92), - - (%n Yo

represent a collection of ddﬁ and you are asked to find a

Poh nomiad function of degree =\
J

whose graph passes through the specified points. This procedure is called
paljnomid Curve ﬁﬁ"“"f_’,\

If all x-coordinates are distinct, then there is precisely &M\ polynomial

function of degree n -1 (or less) that fits the n points. To solve for the n

—Qﬂﬂlﬁws of p(X), SUBfﬁm each of the n

points into the polynomial function and obtain n _M equations

in ™ variables 8,,a,,a,,...,a, ;.
2
Ayt X +a X+ X =Y,
2
A+ X, +a,X, +---a, 4% =Y,

2
A+ Xy +aA,Xy +---a X3 T =Y,

2
a‘0 + aixn + aZXn T an—1xn - yn

CREATED BY SHANNON MARTIN GRACEY
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Example 1: Determine the polynomial function whose graph passes through the
points, and graph the polynomial function, showing the given points.

(2,4),(3,4),(4,4)
FR) = a, Fax ta X

0(2)= &, ta,(2) ta(2) = 4> a,F2a, +da, = 4

-y
p(g) at+a, (7,)1-6-,_630 =Y 5 \a ¥%a, +9a,
o= a,ta, @) ta, M) -4 > la,t4a, Hea, =4

7 IOOL' A:ti

[:'252:-—-)0|°3]',a¢::0
|

|'-P”o°l_J ’oo az,"'-o
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Example 2: The table shows the U.S. population figures for the years 1940, 1950,
1960, and 1970. (Source: U.S. Census Bureau)

Year 1940 O 1950 -» o 1960 =» 20 1970 =¥ 36
Population 132 151 179 203
(in millions)

a. Find a cubic polynomial that fits these data and use it to estimate the

population in 1980.

Lt 2 represand the ¥ of years after 1940,
Le+ 9 fgpn_gud’ Hu Porddim n millieno.
3

B
PX)=za, +ax roa,x + alX

p(o) =la, = 132
P (16) =la, ¥ 106, + 1004, + 16094y

p()*la, t Oa, +YooQ, ¥ goooa, =179

=51

la,+30a ¥ G00a, + Z7000 5= 203
\* 2 ° 15 | ot 0 © 1016 | &;=Lol%
\ 1o 100 48590 179 |=D |lgpo 1 O 0.110 %;,- o.V10
| 20 yeo Boco | 3 aao :-aooz.k .
L\ 30 aco 2700 27 ) L€ 4 4,z -0.001

r/(x)-r&z.l-lau.x yolo -0.00L% |

b. The actual population in 1980 was 227 million. How does your estimate &

=22l

compare?

NCDOE 132 41.01¢ (4o) + 0.1 (40)"-0 002 (aa)
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Y1=130.1+2. 41X

X=40

¥=226.5

Ao data (5 linear !

Go ’5(70: 0.1 42.41¢
9‘\!6 us a l;(_ﬁl.(

Pa.d 1 Hon. modkel 5
g00,°°

g(%) =057 Twhidk,
5 Noser 10 Hha actuad
populakion in 1990 of

12,400,500 .



NETWORK ANALYSIS
Networks composed of b(gchQS and élu\,d'lm are

used as models in fields like economics, traffic analysis, and electrical engineering.

In a network model you assume that the total _‘F 'OU into a

%&dﬂm Is equal to the total flow _M of the junction.

150 Yo

)00 ‘l'xs’ X| 1'xz_

X, ¥X,~X,= 100
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Example 3: The figure shows the flow of traffic through a network of streets.

400 >0 %

Q

600

(=

300 O o 100

a. Solve this system for X, i=12,...,5.

‘qﬂa"'xz = X, X,.-xz = 400
- o
%y + %X, 7600 X, s X, +x3 X,, s faz
- Xyhxs =
300 = X, + %5 ¥ Xs Ky ¥X +X = 300
(] -1t 0 0 0 (4007 (1o ) O ) ?500
6 ) -) 0| ¢o0 o\ | 9 | 00
ZJ 0 o1 | |1cw|[2|00e ) | IOO'O
L6 v 1+ o 1| ®90 000 @9 J
X, Hx, +xs = oo = X =T -X -X¢
X +x y¥xX_. = 2 50 =3 X, = 300- X, = Xg
‘ ’ > = |00 =X
X“ J.xa = |00 —)X‘.- S

X zWo-5-C x=30-5-%t X =5, X;7190-6 X =C

: st ¢ o
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b. Find the traffic flow when X, =0 and X, =100

X,2 100~ -0 =190 = 60°
X, z?»ﬂ‘o"o 0 = 200

;(3.:0
X, 100 -100 = O

X =
g” 190

c. Find the traffic flow when X; =X, =100
X =100 -V\=> —1c0 = 500
]
X = 360-160 -(o0 = |00
2
=100
x3
X, =00 - 0 =0

l-l
Xs:la'o

CREATED BY SHANNON MARTIN GRACEY
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Section 2.1: OPERATIONS WITH MATRICES
When you are done with your homework you should be able to...

Determine whether two matrices are equal

Add and subtract matrices and multiply a matrix by a scalar
Multiply two matrices

Use matrices to solve a system of equations

Partition a matrix and write a linear combination of column vectors

’](nd\;'ccs are rUPfLwJ'M n %&follow;nj u)mr;
Q) Uppercace ldTer > A B, or C
@ (eprasentative edemaont — A~ [“-:j]

a3 a8 a a 13

@Zz,dmgujar ﬂ-ﬂ’ﬁj (&) Ry =70 &0
Oy a,, 0 P

L .
L'a';' a!.h; T a’“\.-

DEFINITION OF EQUALITY OF MATRICES

Two matrices A= |:aij:| and B= |:bij ] are %ud when they have the
same _ S12® MmXN and aij = I"”J for
|41&m and_1£)&n

Example 1: Are matrices A and B equal? Please explain.

1] No A and B art diFferend
|t SIZes.

A=[1 -1 3 8] 3
)X 4 8
4x)
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Example 2: Find x and .

{Zx—l 4 } - - ‘11
3 |3 =
y 8
A matrix that has only one Cb|urnr\. is called a Co]wmr\-—
maAriy or _column vectnc
A matrix that has only one _ Cow is calleda _ {oW)
mahri X or __row vector -
Boldface lowercase letters often designate ¢ ollamn md’ﬂ CesS
and _ 0w Mmaldricen
S a
We N’I“ wae az=| "
A

RN NS IR

DEFINITION OF MATRIX ADDITION

It A= [au] and B= |:bij:| are matrices of size mxn, then their _SN is

the mxn matrix given by A+ = [aij ¥ L,J]

The sum of two matrices of different sizes is Md,g.-}m.ﬂ()\,




DEFINITION OF SCALAR MULTIPLICATION

If A= |:aij:| isan mxn matrix and cis a scalar, then the scalar

muﬂ'ipl?-

of Abycis the

mxn.

matrix given by

CA = |e%yy

You can use ~ A

to represent the scalar product (‘i) A 1f Aand B

, Find

:B+A

be matrix aMifomn

are of the same size, then A—Brepresentsthe sum of A and "6 :
1 -3 6| 5 2 7]
_ A= 2 0 2 B=|-1 9 -4
Example 3: For the matrices and
s¥x3| 2 8 -1 3x3-3 0 1|
145 342 61 | (57 243 q4c
a. A+B = -y -
2441 0t% 24 = Hiez 400 -44T
=24~ 40 -1+ . -
e 3 J [t ovd 137
¢ -\ 3
‘L.s q -'Z- hyM(tr
g O | 'S commutaFive .

. 2A-B=(3-% S

CREATED BY SHANNON MARTIN GRACEY
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DEFINITION OF MATRIX MULTIPLICATION

If A= [a'ij:l is an MxN matrix and B = [b.,] is an NX P matrix, then the

Muc‘}' AB is an Mx P matrix.
A6 = C [c :J']

where

j LaleKo': Q. bJ+a bz\'t +a’m.. nj
K=l

To find an entry in the ith row and the jth column of the product AB , multiply
he _‘g_nj]'tcs in the u‘H\ row of Aby the corresponding entries

in the ‘\_“\, column of B and and then Qd the results.

Example 4: Find the product AB , where C - (L])(-ﬂ.) - -48

A{ﬂ and B=[-12 7] oz =t
2x| IxL ¢, * (3) k) ° =3¢
AB = C SR e B (-3) (D =2

{ ][n. 1] = | © %-qt 24 ] )
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Example 5: Consider the matrices Aand B .

NEE o [ 4
“l11 13]3d "7 6 13

2x2 2xZ
a Find A+B. c. Find B+A, 2
57 BrA =|
ArB e 7 2¢ "7 2c
b. Find AB . 4 Find BA.
[en@)HOND (DG
e (NER) § 696) D)+ (+9)(13) |

\ 7 (—7-4 3 1~y 3 2
AR = L 35] [ ¢ 124N \
34 213

L B |

[(»\) (0 FEW) (G A1) J
WEDF 03 )  ()13) y (1303)
8

40 z
1317 lﬂq] ' BA

J—

e. Is matrix addition commutative?

Yep !

f. Is matrix multiplication commutative?

Hel) NO)
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. =
Example 6: Multlplll. Ax

A 3

d, 4y Az || X% Q, X, “' 0\ * ai‘!x
Ay Gy Ay |l X = , + Q 3(1_ t qt?:x
Ay Q5 Ay || X G-; X, + a‘.':?vx’- j—a_“

3x3 Sx l
Size affer mult.
dim . Reed Yo Mmakch
o vy,

SYSTEMS OF LINEAR EQUATIONS

A

The system _ l)
ﬁu X, ¥ anx i- agg 3 )

az,X,i-a,nX,_*""u 3 ° L'&-

x =b
as,x‘ ¥y auxz_ Y &y, % 3
can be Writtengs . b, 7]
a, 2 %3 )t' - b,
Gy B T3 ’ b
Qa xs s
&y, 0, "1nJL -

or equivalently,

AR = b

CREATED BY SHANNON MARTIN GRACEY
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Example 7: Write the system of equations in the form AX =D and solve this
matrix equation for X.

2%+ 3X, = 5
X, +4x, =10
2- 3 xl - 5
\_l q % "°

-~

f " PY A% 1 Vi R 'st‘z.‘l'f‘haa'

2 %»\5 \ 4|0 o L 0 |-

WL ].0 '5\“5 6 1|3
)

A<D .-J-Rl_""az 'y,' = -4

v 4| L

\7,‘5 S} ) 4

")
o\

x = 3

\0
—

2, | {(«115)3

__"-\

o | )
cConsis Fend and
indl |

PARTITIONED MATRICES | indegendent,
A %o Y
— . —_ — —_ — —_
&, adp - a‘l‘n X b,
A = a.21 a.22 - : - a,zn X = X2 b = b2
_aml am2 amn_ _Xn_ _bm_
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LINEAR COMBINATIONS

The matrix product AX is a linear combination of the [',olum\rv vectors
a,,a,,a,,...,a, that form the CQL‘.F{i_de' matrix A-_ -
(&0 ] g“az.j P's ) :""
L \Gen [ 4 X, Joen | ¥ x, |%0 | heo b X, .f"
Sad 0w ) Loy B

The system AX =D is consistent if and only if b can be expressed as such a

._) inmr

combinaldion

, where the

(01.%5 cendo

of the system.

of the linear combinationarea _§ Q‘ g id”b

Examplg 8: Write the column matrix b as a linear combination of the columns of A.

o O

3 5 22 oo\ X))
A=| 3 4 b=| 4 X = v 1acons isent
4 8 32 x| ‘_6351‘““ .,
N -3 S ar o}9
Ax = b 1 4 Y — 61\ |°
= 900 |)
X 3\ ‘I'Xzaz, = 8 L' Q 3?'—-‘ - =
(-3 Is1 ¥ ®
) - |4 b Conndl be expressed oP
Yl 3 |+ Xe|y - xP
! 5 2L A dinear combinafiot™ of

P columns of A, 50
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Example 9: Find the products AB and BA for the diagonal matrices.

3 0 O -7 0 O
A=/0 -5 0 B={0 4 O
0 0 0 0 0 12 3
-2\ O 01 AN °
BA*| , -20 ©
AB =\o -» O
9 0
0 0 0| I J
hmmm:"

ma:ou ‘ﬂu.Prad-Ad' of alu'ajmaﬁf mkrico 13
tommed adfve .

Example 10: Let A and B be matrices such that the product of AB is defined.
Show that if A has two identical rows, then the corresponding two rows of AB
are also identical.

proof: ¢} A:[a;d] , B‘ll’i\j] D a‘:)’b"d 6W~, A6 are 3x3.
a =4 a sk, , Q za wt (=AB.

i\ 2 T2 / 13 L3

(Om a\z. Az bl' b"‘ L's
C- a, * %3 tu b, ‘::ﬂ
o b, °33
Ga. 4 33 N U3 L #
n b ra.b *“nsLs'L a‘"bﬂmw 23 anl”

a:l’n b hgb, ¥ an\’u G ) A7t b
o b ¥Gabu k Baby  Gubat Gy g ¥ R P

non a L ta b ra
l’n"anbz\ Y assl’m 6\3'5“3' ﬁnbui’ a”bn LA 2 o

Ay,
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Section 2.2: PROPERTIES OF MATRIX OPERATIONS
When you are done with your homework you should be able to...

n Use the properties of matrix addition, scalar multiplication, and zero
matrices

n Use the properties of matrix multiplication and the identity matrix

n Find the transpose of a matrix

THEOREM 2.1: PROPERTIES OF MATRIX ADDITION AND SCALAR
MULTIPLICATION

If A, B,and C are mxn matrices, and ¢ and d are scalars, then the following
properties are true.

1. A+B= 9+A Commutative property of addition
75 iiek A=[ay] B[k ] AB arc man, 4y by €R.
ArB = [o b7 = [I,uf i ) (st 45 ace commut.) ande

L tai;)=64A.7
2. A+(B +C)= (A +B) ¥y C Associative property of addition
3. (Cd ) A= C ( AA ) Associative property of

o TFATE Y i e R, (A cdby] s [@ey]
Naw L(‘d)“qj [c (dds," )] (fec) B's ofe assec.). So

(ela]e cfdaj] < c(ah).y
4. 1A= A Multiplicative Identity (SCGJW)
5. c(A+B)= ¢A+ ch Distributive property

o5 A (g 1 B-Lb;y], a5 b, ¢ cR. c(A+8): C(Ea,,]r[l,,dl
= efom+bi) = [elagrby)) = [eagrebs] (Laceast)

= [ee;) i—ﬂcb.o] c[a,oj-r ofe;y] - c/‘\-l- ¢B. »

6. C+d)A— cA{-dA Distributive property
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Example 1: For the matrices below, C=-2 ,and d =5

3 5 11
A=| 3 4 B=|2 7
4 8 6 9
c(A+C) = -2 \-10 6
a ¢(A+C) = -2 |7% 2
IS |Is

-0 -~
¢ 9 _to —Ao

. CA-(B+C)

. ________________________________________________________________________________________________________|
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THEOREM 2.2: PROPERTIES OF ZERO MATRICES

If Aisan mxn matrix, and cis a scalar, then the following properties are true.

1. A+0_= A addihve iduﬁ:{'g

2. A+(-A)= Omn  addifve invery se

3.1fcCA=0,then ¢ =0 OF A=omn.

Example 2: Solve for X in the equation, given

-2 -1 0 3
and
3 4 -4 -1
a. X =3A-2B
-t -9
X[
" -0 |

b. 2A+4B =-2X
-A -26=X
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THEOREM 2.3: PROPERTIES OF MATRIX MULTIPLICATION

If A, B,and C are matrices (with sizes such that the given matrix products
are defined), and cCis a scalar, then the following properties are true.

1. A(BC)= (AG)C- Associative property of multiplication
Ly A=[ay], andi¢ mxn. B 3[“’%];5 S nxp . (s [ci‘j]) Cis pxq.
a5, by &y e D=ABC (X

D=t 8, AipByC,: ﬁi(é‘,A-‘an) ¢y " £, VBC
p= if i‘LAIPBfOLQ'U ,é'A;r (i‘\,ef‘tcm): ifA‘P (QL)PQ_:A“‘D//

2. A(B+C)= AB Y AL Distributive property of multiplication

3. (A+B)C=_AlL+4 %) L Distributive property of multiplication

4. c(AB)=(cA)B=_A(eB)

Example 3: Show that AC = BC, even though A= B.

4 -6 3
B_[S 4 4} C{
-1 0 1
)
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Example 4: Show that AB =0, even though A=Oand B=O .

m
1 -2

SR E
2

THEOREM 2.4: PROPERTIES OF THE IDENTITY MATRIX

If Aisan mxn matrix, then the following properties are true.

1. Al = A 2 1A= A
wa. [V 2 3,0 ° Ais man
“ﬁ‘ l%q o ) \ I,niSnxn

A1 (140 ot T A ALn =
= $+0 ow] AR NN L is mxm

L IMA :A

I A=
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THEOREM 2.5: NUMBER OF SOLUTIONS OF A LINEAR SYSTEM

For a system of linear equations, precisely one of the following is true.

1. The system has exactly QAL solution.

2. The system has .i'\,g'in‘ddl:\’ many solutions.

3. The systemhas Q0 solution.

Proof: jh, to(’*

. ________________________________________________________________________________________________________|
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’ !
m odkave : A
THE TRANSPOSE OF A MATRIX

T
The transpose of a matrix is denoted & and is formed by writing its
co lunrny as _rowS

- . r“b
Example 5: Find the transpose of the matrix. Sj“\r‘r.ld};
6 -7 19 (¢ -7 1 w

A=|-7 0 23 AT-‘-‘- -1 0 175 B"‘z] T)E'Z
19 23 -32 14 2% -%2 %4 3y

] e"-—-{‘zi] - b

THEOREM 2.5: PROPERTIES OF TRANSPOSES

If A and B are matrices (with sizes such that the given matrix operations are
defined), and cCis a scalar, then the following properties are true.

1. (AT )T = A Transpose of a transpose

2. (A+ B)T = A-f 4 61' Transpose of a sum
Lt A, 6 be men . A<fag) B[] o by ¢
(PH’G)T = (lai‘]*[.bib] )T 2 [“;6 ¥ b,’",]fz ‘_a‘()'\ "bji‘l =AT‘|'GT/

T
.
3. (CA) = C,A Transpose of a scalar multiple

T AT
4, (AB)T - B A Transpose of a product




Example 6: Find a) A" Aand b) AA' . Show that each of these products is

symmetric.
4 -3
2 0
A=|-1 -2
14 -2
6 8

11

12

[A1TxCA]
253 1@ 168 -107
18 81 -70 44
168 -70 294 -139
-107. .44  -139 107

[A1Ix[A]T

(29 30 2 86 -10]
30 126 -5 169 -47
2 -5 14 -37 -10
86 169 -37 425 -28

| -10 -47 -1@ -28 141.

Example 7: A square matrix is called skew-symmetric when A" =—A. Prove that
if A and B are skew-symmetric matrices, then A+ B is skew-symmetric.

PH A=A B --B.
(ArB)" = AT+ B
= _At (-8)
= - (A H’a)//

CREATED BY SHANNON MARTIN GRACEY
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Section 2.3: THE INVERSE OF A MATRIX
When you are done with your homework you should be able to...

n Find the inverse of a matrix (if it exists)
n Use properties of inverse matrices
n Use an inverse matrix to solve a system of linear equations

- LMZMSVL
Zx mmxﬂmm

C‘L )Zx ’(l)s Ax = mh

li’ x:m;.l\.

/‘b
DEFINITION OF THE INVERSE OF A MATRIX

An nxn matrix Ais _.\_nVOf'! ]b ‘.a. or haﬂéinzlw

when there exists an nxn matrix B such that

Ab = BA = I,

where |, is the LM'h M matrix of order n.The matrix B is called

the ( mw\‘l‘\?L gg;l ) nvest of A.A matrix that

does not have an inverse is called noninvertible or Sinj IA‘M

*Nonsquare matrices do not have inVCISLQ

Example 1: For the matrices below, show that B is the inverse of A.

2{1[ AL A
B:

os]'j"
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THEOREM 2.7: UNIQUENESS OF AN INVERSE

-\
denoted A . J

If Ais an invertible matrix, then its inverse is unique. The inverse of A IS

Yruare A sts

Proof: S\n@ A 1S anb(H\)\t 3 B2 AB: I, . (d{.:Fr\)

Ab

Suppase. A has anofler inverse ,C 5 AC=1,7 CA,
-1 g:=C. ..Tunmuxa{_a,maj’ny;s

(D) L1 iy 4
(CA)é’c
1 B = C,

FINDING THE INVERSE OF A MATRIX BY GAUSS-JORDAN
ELIMINATION

1.

3.

Let A be a square matrix of order n.

Write the N X Zn matrix that consists of the given matrix A

on the left and the nxn ldu'd'l hA matrix l on the right
J
to obtain [ﬁ I] . This process is called jéd‘n'tnﬁ

matrix | to matrix A.

. 1T possible, row reduce A to I using elementary row operations on

-}
the entire matrix E A I . The result will be the matrix E I A l It

this is not possible, then A is noninvertible (or 5\:509“' ).

-‘ -
Check your work by multiplying to see that _Af =T =A A
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Example 2: Find the inverse of the matrix (if it exists), by solving the matrix
equation AX =1,

T\;*'K g R, )'%75 R;"'Q‘L

(A1) )5 -2 |0 ls My
L 50+ 117 ke 0V {7/ "h
\L 3 ‘\ 0 .;i -~
\o -39 |5 ‘2'] 1w \
MIRII%4 T 2pa A3
S oo |8 V| /39 -2
L, -394 \-5 1

Example 3: Find the inverse of the matrix (if it exists).
a.

Ay S

. ________________________________________________________________________________________________________|
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10 5 -7
A=|-5 1 4
3 2 -2

. ________________________________________________________________________________________________________|
CREATED BY SHANNON MARTIN GRACEY 45



THEOREM 2.8: PROPERTIES OF INVERSE MATRICES

IT Ais an invertible matrix, K is a positive integer, and ¢ is a nonzero scalar, then
A7, A“ cA, and AT are invertible and the following are true.

L (A =_A

o (A) = (K')

THEOREM 2.9: THE INVERSE OF A PRODUCT

If Aand B are invertible matrices of ordern, then AB is invertible and
(AB) =B*A™

Proof:
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Example 4: Use the inverse matrices below for the following problems.

2 1] 5 2 ]
Al = 7 7 BL— ﬁ ﬂ
3 2 3 1
7 7. (11 11
ol =\

(¥ T % ¥ L'/*nf\

CREATED BY SHANNON MARTIN GRACEY
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THEOREM 2.10: CANCELLATION PROPERTIES

ITC is an invertible matrix, then the following properties hold true.

1. 1f AC=BC thenA=B. Right cancellation property

2. 1f CA=CB thenA=B. Left cancellation property

THEOREM 2.11: SYSTEMS OF EQUATIONS WITH UNIQUE SOLUTIONS

IT A is an invertible matrix, then the system of linear equations AX=D has a
unique solution given by x=A"b .

Proof:
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Example 5: Use an inverse matrix to solve the system of equations.

pd

-9 -
X+ X,—2%, = 0 A’-“ ) 2‘. S\ % 'c__ 00
X —2%,+ X;= 0 -1 X =|X2 -
X — X, — X =-1 I -1 - | K‘5 -

11 -1
\
Y C_ |2 L
g:AL ﬁi' 3 3 1
12 4
3 3

. ________________________________________________________________________________________________________|
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Section 2.4: ELEMENTARY MATRICES
When you are done with your homework you should be able to...

n Factor a matrix into a product of elementary matrices
n Find and use an LU-factorization of a matrix to solve a system of linear
equations

DEFINITION OF AN ELEMENTARY MATRIX

An nxn matrix is called an matrix when it can be obtained
from the |' d!ﬂﬁ'hg matrix Lﬂ by a single elementary (oW
operation.

Example 1: Identify the matrices that are elementary below, show=8FFc—5-Ts the

v

1 0 0 | 1 3 NO;SC{_"‘M

A{Z ‘1} B=[0 1 0 c=| o 1|
0 2 0 —2 1 1 -3

M o A . I B )
3&0‘1 ).} ol O

g 0 |

B-.—.a-z_ll,_i'ﬂ-;
)

THEOREM 2.12: REPRESENTING ELEMENTARY ROW OPERATIONS

Let E be the o/ unavhn{) matrix obtained by performing an

elementary row operation on im . I that same elementary row operation is

performed onan M XN matrix A, then the resulting matrix is given by

the product M :
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Example 2: Let A, B, and C be

Find an_’elementary matrix E such that EA=C.
1C -2)
e e, ¢ llv v -37 @

oo ][~ ol [T 9]

L

t"u : ‘e’u (')""elz (O) ¥ e"3 (Jl) =

2) = 4
¢ re (Dren() t ¢y (O _
v n C + “',3(0) - }
e *e (3)+ 2, 2)
'3 i
€ -—els 2O P e~ ('13
2"'“ ¥ 2."_ FZQ.'.} = b‘ - Z"n "C.L‘f ze’u "‘l - L"'u rc":q
- ben']'Z& = "3 4‘"_,_' "Qn
/N 3 3
i o V7 '30,3'1-(%,,;4)-}
=0 9 ~e, Fle, —% =°
; ""Ge, =5
| 0o | .
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Example 3: Find a sequence of elementary matrices that can be used to write the

matrix in row-echelon form.

EEE A =0

(1 o O
al O

00 ',

) 0 O

9 o |

CREATED BY SHANNON MARTIN GRACEY

oV O

7
/]
o

o

Elem. &sw 0p-

Q co

10 3-% 6
-1 2-2

0 021

Elem. Mﬁ&

- 00

QO )
o

0
J
O'/z

e

) -) 2 -2
ol -2
ago ||

Anoms & Tt is frue |



DEFINITION OF ROW EQUIVALENCE
Let Aand B be mxn matrices. Matrix B is fO\A)'MWVM

to A when there exists a finite number of _MCMU\"'MM matrices,
E E . 'El(, such that

BXLKﬂE’EA

THEOREM 2.13: ELEMENTARY MATRICES ARE INVERTIBLE

If Eis an elementary matrix, then E™" exists and is an IﬂVe{‘h l:; IL
matrix.

Example 4: Find the inverse of the elementary matrix.

: ) OO
1 0 0 - -
Jroe This 15 -3k, T€,—>@, Srom I-=lo,0
0 31 0o l_
”, o O i () o O
E-' . o) O 2 (9
0 5 l J ‘_,0 "3 '
1 o Lo v
-) -\ 8 100
EE =|o O - £ L 'O?%J 3R g IR Fz[a;,J
(/]
Lo 0! © 2 *
E-\
-l
EEA [z &




THEOREM 2.15: EQUIVALENT CONDITIONS

If Ais an nxn matrix, then the following statements are equivalent.

1. Ais mW‘hH"

2. Ax=bhasa__ UM q.“@ solution for every __ N X l
-

column matrix b .

3. Ax=0 has only the by | vi G.R solution.
4. Ais oW -qg,_a'l_ui»lo.pud‘ to L‘ .

5. A can be written as the product of (,lun).n#a.(sé. matrices.

THE LU-FACTORIZATION

5% Jone iria-nstda’ 3,(3":3&:; Hiangdos
%

madrix

"d” o o | -al\ a\?.- A3
au al‘& O 0 G-u(_ qz&
a
[/ a
L2, %52 %% Lo o T3 |

DEFINITION OF LU-FACTORIZATION

If the nxn matrix A can be written as the product of a lower triangular matrix
L and an upper triangular matrix U , then A= LU is an LU-factorization of A.
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Example 5: Solve the linear system AX=Db by

a. Finding an LU-factorization of the coefficient matrix A.
b. Solving the lower triangular system Ly =Db.

c. Solving the upper triangular system UX=Yy .

2%, =4
—2X + X, — X, =4
6X, +2X, + X, =15
-X,=-1
{2 6 o o]
“’)A’,z | -1 O
¢ L | O
o 0 O "‘__
Ty (h 000
) ol l O
2 0 0 O -
= [y 0 0 Kb.]-ﬁ;qﬂz E‘ 00) 0O
L ¢ 2 | S ‘OdO 'J
|[o oo -1 ) -

- E'EA DAE, L

2110 £” ton be obfamed by
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Section 2.5: APPLICATIONS OF MATRIX OPERATIONS
When you are done with your homework you should be able to...

n Write and use a stochastic matrix
n Use matrix multiplication to encode and decode messages

STOCHASTIC MATRICES

Many types of applications involve a finite set of

of a given population.

The that a member of a population will change from
the state to the state is represented by a number
, Where . A probability of

means that the member is certain to change from the jth state to
the ith state whereas A probability of means that the member
IS to change from the jth state to the ith state.

| Pll P12 Pln |

p| 2 T2 T

P, P, - P.|

P is called the of probabilities. At each

transition, each member in a given state must either stay in that state or change

to another state. Therefore, the sum of the entries in any IS

. This type of matrix is called . An

matrix P is a stochastic matrix when each entry is a number between and
inclusive.

. ________________________________________________________________________________________________________|
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Example 1: Determine whether the matrix is stochastic.

[035 0.2 B=
1065 0.75

Olw N~ O]k
Blw 5|l alw
B|\1 W B|H

Example 2: A medical researcher is studying the spread of a virus in a population
of 1000 laboratory mice. During any week, there is an 80% probability that an
infected mouse will overcome the virus, and during the same week, there is a 10%
probability that a noninfected will become infected. One hundred mice are
currently infected with the virus. How many will be infected (a) next week and (b)
in two weeks?

. ________________________________________________________________________________________________________|
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CRYPTOGRAPHY

A IS a message written according to a secret code.
Suppose we assign a number to each letter in the alphabet.
O |_ |14 |N Example 3: Write the uncoded row matrices of size 1 x 3
for the message TARGET 1S HOME.
1 A |15 |O
2 B |16 |P
3 |C |17 |Q
4 D |18 |R
5 E |19 | S o _ _
Example 4: Use the following invertible matrix to encode
6 |(F |20 |T the message TARGET 1S HOME.
7 G |21 |U 1 -2 -2
8 |H |22 |v | A=-1 1 3
1 -1 -4
9 I 23 |W
10 |J |24 | X
11 |K |25 |Y
12 |L [26 |Z
13 |M

. ________________________________________________________________________________________________________|
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Section 3.1: THE DETERMINANT OF A MATRIX
When you are done with your homework you should be able to...

n Find the determinant of a 2 X 2 matrix

n Find the minors and cofactors of a matrix

n Use expansion by cofactors to find the determinant of a matrix
n Find the determinant of a triangular matrix

Every 501%0-(’(’ matrix can be associated with a real number called its
OIQ/‘S'EMlnaA‘\T . Historically, the use of determinants arose from the
recognition of special ?Oj"\'e,f N5 that occur in the
j?)\mﬁﬁ“p of systems of linear equations.
Consider the system
b~ (6\ b, ab) |
aX +a,X, =h X = ) __‘_"‘_-._._‘.L-—-—-———--——- .
%, +8,X, =b, : A%~ 0\‘10‘ 2\ al "
- -ee——
J‘n X - -—I--""'L.—-—__
= b : O (ﬁ BRI
b .-a.\-.,x"- IR o\_w-xz' 2 h N 7,?. "
) _I?/ - 6.0 nbzﬁy%bi
Lo N 6,82” AT
& X ¥ & O X K a )
az.\\; 0\1. u v \, 0\“ (Q"Qn aﬂ § )
e . b Q b
ﬂ\;\ X ., 0/ ( (¢
- - 6\ 21
o b TR (Gu n” G A ) %“ (202" "
AR -
'X_, - a b - QA b _ altb' aﬂ- 1
L X = _~—
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So, we have found that - L a
ba,,~” "’t“rz. =B"a“ v g
(2ol L and kT

\ a“&n““uan- "ot un

DEFINITION OF THE DETERMINANT OF A 2 x 2 MATRIX

The MM of the matrix

A— |:a11 CP: }
dy; Ay

)= 'AI = “nau-'auq"'-

is given by det(A

**Note: In this text, _d.o,“' (A) and lA‘ are used

interchangeably to represent the determinant of a matrix. In this context, the
vertical bars are used to represent the d{_ﬁ("\lﬂm" of a matrix as
opposed to the abSO\%“'- value.

Example 1: Find |A|and |B|.
Al 7] o-|% ]
dd(ﬁ)’ (..\)(‘l)- (W)(4) ad (8)= (7-‘)(“3)" (-6)("3)
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DEFINITION OF MINORS AND COFACTORS OF A MATRIX

If Aisa SQHMWL matrix, then the _¥N)NnoC M ié_ of the
element G’,'i Is the determinant of the matrix obtained by deleting the ],. 'H’I.

row and the ')ﬁ column of A.The (,Q{ﬁ (."‘pr c_;a_ is given
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Consider:

+ - o+ -
+ - % b, b, b, b,
a11 a12 a13 - $ |~ 'i"

A— - g - B — b21 b22 b23 b24

% 2 % bk by by by,
L b7 bt b, bY

What do you notice?

DEFINITION OF THE DETERMINANT OF A SQUARE MATRIX

If Aisa SQ_UM" matrix of order N> 2, then the M{JMIM"I
of M A is the SWM_ of the entries in the first row of A multiplied by their

respective _(,m_d-_ors . That is,
n

ta
det(A)=|Al=Ya,C,, = a,C, ¥ 0\2_6.7_1- ta,Cin
j=1 MM G-'C" _a.

510N

\ a
L . M ] A
d-d'(ﬁ) = -é’.a't' t,\\_‘ ith vow eXpansion % TF can be
Example 3: Gb'nfirr% that, for 2x2 matrices, this definition yields o
|A| = ay;a,, —ayda;,. Mj row
+ .
COoOJUMNn.
A an ] l
A= Ry 22

\A\"' a, (“l-"-) + (- ‘) an_ (azs)

- “-A QK
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Example 4: Find |B|.

P
2 -1 4
B=|0 1 3
5 -2 1 -1 4

U]
'0
~~\
\
v
o
-~
—
e
w
\
w
)
L
N/

THEOREM 3.1: HAZERNLMADA ORANVACRESTPRODUCT

If Abe asquare matrix of order n. Then the determinant of A is given by

det(A)=|A|= Zaucu 2, C; ¢ “i;.cit boood a‘mcil\-

det (A \A\—za”c,,— oy (',“ po Gyt - mmc,,\ . Colum

expansion)

(ith row expansion)
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Is there an easier way to complete the previous example?

Example 4: Find |B|.

N

1 4
B=[0 1 3| s the row or column which hao

(oW x columnn .

Alternative Method to evaluate the determinant of a 3x3 matrix: Copy the first
and second columns of the matrix to form fourth and fifth columns. Then obtain
the determinant by adding (or subtracting) the products of the six diagonals.

Example 4: Find |B|.

,7_4‘2- 0
2 1 4 =
B=|0 1 3 0 \

3 -2 1 -

Sy’ 2)-% 0
lel ’\-.7"1'(";) 'l'Q]"'[I’L ¥ (-'i?.«) .]-o:‘ :@
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Examp‘If 5: Find det(A),

— = + —
1 0 00
3 7 00
A=
6 -1 2 0
-3 5 -8 7
L RS
7 0 © o
d&“'(ﬂ): I -1 2 O |~ O +90 -
15"3 1
2 0 |-0 + O
M(h)’ 7 __,g.'\

bt (4)= 1 (14-9)
det (K)=

What did you notice?

We [kt 22006 and k) ... the product of Ha main
diajona\ entries 15 aDsd 43,
THEOREM 3.2: DETERMINANT OF A TRIANGULAR MATRIX

If Ais a triangular matrix of order n, then its determinant is the

_:P’ddud of the _&A*rl&o on the M
diafa’ond}- . That is,

det(A)=|Al= _@,;/Bz, Rar " Rpq
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A
A1

Example 6: Find the values of A, for which the determinant is zero.
A-1 1 -
s aa =(A)(x-3)-4 =0
Z -
N-4x1D -4 =0
%
P _4)\ -\ =20

A 4 2 {Tec-4)
oz
A=4t 245

v

A= 235

. ________________________________________________________________________________________________________|
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Section 3.2: DETERMINANTS AND ELEMENTARY OPERATIONS
When you are done with your homework you should be able to...

n Use elementary row operations to evaluate a determinant
n Use elementary column operations to evaluate a determinant
n Recognize conditions that yield zero determinants

Consider the following two determinants:

-1 2 6 -2 ] -1 2 6 -2
-2 9 15 7 0 5 3 11
A = B =
3 -6 =17 4 0O 0 1 -2
-5 10 30 -15] 0 0 0 -5]

Find the determinant of each matrix.

N2-¢ 2]
Al !..:7:.‘::’---I f (8) = ol % Y

99 | -1
8] = (VE()(-5)<[25 loos 1.
ref (LA | | hean .. evi | pla
s T8 20| MM gitemat)
@ 8 1 -5
29 0 0 1
\“. 0O o0 O
et (ﬁ):rrq(ﬁ) =|p1t 0 O
ool O
lo 9 (0] ‘
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What did you find out?

4= 18]

Take a closer look at the two matrices. Do you notice anything?

R, = 2R, +R, = resulls in R, frdmA

bR, gty v o
Rﬂ’g‘s“’*q—-’ o Ry

THEOREM 3.3: ELEMENTARY ROW OPERATIONS AND DETERMINANTS

Let Aand B be square matrices.

1. When B is obtained from A by iﬂt&(c.t'\wgih‘j two Y'OWS of

A._del () = - det (A)

2. When B is obtained from A by ac‘dmj a mu' 'hf’l‘b
of a rovl\’/GA to another row of A, _dhet 6) - dﬂ' (A)

3. When B is obtained from A by mulﬁp|3|uj arow of Aby a

N &N 2200 constant ¢, _deb (6)= cdet(A)

NOTE: Theorem 3.3 remains valid when the word “column” replaces the word
“row”. Operations performed on columns are called elementary column operations.
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Example 1: Determine which property of determinants the equation illustrates.

1 -1 3 3 -11 4| hf(ﬁ):*ald‘(ﬂ)
4 12 T|=- 124:
3 38 |8 33 B
b.
2 -4 2 1 -2 1
6 10 2[=8]3 5 1 s
s a6 |4 23 P def (A) = ¢,¢,0, dek(B)
Ll oé
%% 2 1

Example 2: Use elementary row or column operations to find the determinant.

3 4-1

3 8 -7 33 -1
0 5 4|=|o-5H A"’[d-S%
6 1 6 003 e ) 6

o -IS 20
\L"}Ez"'L}‘, &

'56'7]
o -5 4
[003

z (3)(-5)(8) Y 3 ZI :]
:[-120

CREATED BY SHANNON MARTIN GRACEY 71



THEOREM 3.4: CONDITIONS THAT YIELD A ZERO DETERMINANT

If Ais a square matrix, and any one of the following conditions is true, then
det(A)=0.

1. Anentire _rgw or __Column. ) consists of _ €K 0S
2 Two FOWS or _C6lumns ) are e%uaﬂ

3.0ne__fOW (or cglu.mn. )is a mu\hglg of

another AW  (or Col VW ).

Cofactor Expansion Row Reduction

Order n | Additions Multiplications | Additions Multiplications

3 5 9 5 10
5 119 205 30 45
10 3,628,799 6,235,300 285 339

Example 3: Prove the property.

l+a 1 1
1 1+b 1 :abc(1+£+%+1j, a=0,b#0,c#0
1 1 l+c a b |
Yaof . Lot a, b, ¢ G and nonZero.
+ ! y )
Iy 1\ b | ~ +
T e |z (e) | e | e \M’ I
| = (.,,Q[(lf‘v){li&)"] -
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= ﬁb@("a.i.%*%*‘)

> abe (| *‘k-*‘t *}é)//



Section 3.3: PROPERTIES OF DETERMINANTS
When you are done with your homework you should be able to...

n Find the determinant of a matrix product and a scalar multiple of a matrix

n Find the determinant of an inverse matrix and recognize equivalent
conditions for a nonsingular matrix

n Find the determinant of the transpose of a matrix

Example 1. Find |A[,[B[,|A][B[, [A+B[,|A|+|B[and |AB|.

2 0 1 2 -1 4
A=|1 -1 2 B=(0 1

3 1 0 3 -2 1
det([A]1)
.................................................. 9.
-
e o
det( [ H] +[ B] ) ............................. dlﬂr‘y. .
............................................... 145 et (Ar ) # déh (A )-dol(B)
det([AJ1)+det(L[B1)
_________________________________________________ e
det (A1) xdet(CLB1Y

2 hmm. . .

dé{(.[.h]*..[Bj._j .......................... G na‘ju M(M) =&T(Aw
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THEOREM 3.5: DETERMINANT OF A MATRIX PRODUCT

If Aand B are square matrices of order n, then

ded (AB) = det (A)det (6)

Example 2: Find [3A]and [3B].

. 2 -1 4
A{s 10} B{g _12 ‘j
ddA=10-(-3)=13 et (8) = 7 )
ded (35) =39 = 3 ‘(-1) = -189
def (34) - Jq 34 whao heot! |

= 4-(-21)

- 413 Qmmgbeald(c/s) - ae (). .

THEOREM 3.6: DETERMINANT OF A SCALAR MULTIPLE OF A MATRIX

If Ais a square matrix of order nandc is a scalar, then the determinant of |CA| IS

c“mca)

q, Q n,
Proof: m A= a au] :f c/ai‘i Cﬂ-.
M(Q’ Ca CQ; Ca Cd\

a
C/d‘au ¢t autn

s:: (G.HQH- ) c‘lt)
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Example 3: Find A™, |Al, B™ and |B|.
-3 6

e

5 2
11 7

} (8 Iz.]"ﬁ 7-',\Bou]
1y

Lo ) -1, +54,2 ¢
[AIJ"[-H 0*] AN
i) io e 5
_Z'_|‘,3'.(7ez vl,
[-; ¢ \. os] 15,3 28, K.
22 - -% 0
@'\\;\0 } 0 ":6 \95\'“ S]
”“? X 11.
0 %Y ‘ ) o \ 3 s
A is singudas i.o [
- (Y3 U
det(A) = g%X‘{)’(LX‘L) B - L\{/‘; 5/\3)
2 :[6 2 g@ﬁ dJ(B)‘(S)(ﬂ)‘(Z7(")
h 1 ))isAis iz ond . ‘= ,',3-2
oy se b (40507
au“z.{d;a‘n- =0 G'"]

THEOREM 3.7: DETERMINANT OF AN INVERTIBLE MATRIX

def () # 0

A square matrix A is invertible (nonsingular) if and only if




Example 4: Find |A| and ‘A_l‘.

e

THEOREM 3.8: DETERMINANT OF AN INVERSE MATRIX

If Ais an nxninvertible matrix, then

iy i N
dek(8') ki)
Proof:

Singe A 1 inverkible , AR’ =L and AJIA] 2] = L

¢ |a)A™) =)
.Sma.AtsthblL,M(h)#O- o9 a)- ___'//

JAl
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EQUIVALENT CONDITIONS FOR A NONSINGULAR MATRIX

NonSINRIal
If Aisan nxnmatriX, then the following statements are equivalent.
1. Ais lnkthl)\t . l
2. AX=Db has a _Aqu. solution for every _ N X

column matrix.
3. Ax=0 has only the l‘rhfml solution.
4. Alis rgw-mw\plw to Tn

5. Acan be written as the product of QAM'\N% matrices.
6. _deX(A)# 0

Example 5: Determine if the system of unear equations has a unique solution.
yo1 =)
=
X +X, —X, =4 A=la-Vv -}

2% —X, —X,=6 2 -2 2
3, — 2X, + 2X, Ll \ . -0 20
dek (A)= l'-Lz\-|]5 z‘*(‘) 2 7—\ ] wsad—m
s 2-(2)~(4 ¢~ (=3 \ '

hao o wnigue
...-'L"‘L 7-(") — Jdu*:"*\. ?/
Example 6: Find |A| and ‘AT‘.
7 12 T - - 2=
{2 —2} A [‘7' 'L] ched (A ) = ~14-24°3
de¥ (x)=-H-2 = -3

THEOREM 3.9: DETERMINANT OF A TRANSPOSE

If Ais a square matrix, then

dof (A)= oet (A7)




Section 3.4: APPLICATIONS OF DETERMINANTS
When you are done with your homework you should be able to...

n Use Cramer’s Rule to solve a system of n linear equations
n Use determinants to find area, volume, and the equations of lines and planes

Example 1: Solve the system of linear equations. Assume that a,,a,, —a,a,, #0.

a, O = (b
a X +apX, =b A:[ 1) (> L ._.[b;]

a,, X +a,,X, =h, Ay P2
- -6 Q
_ b-a, JAl= &8 %t
X, =
Ay
a, % +a,,X. = b,
au ba'“\‘l-&l'_)'l'aztxz.:bu
a'“

ba,,~4%X, ta, A, X, = = byt

(0,8, =30, )y = b bu b

X, 2 b,4,- b, 2. _ bz__ﬁ“"bua’m
_,/ﬁj—- ‘—_—.—_—-./_—
a“an-au o“n.. |A|

xl‘: b]-al‘l—x".

o
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X = 2} b, - b, 2.2 ¥ b2
- /

) : Ik\

- a ¥ba,6 *
xX = C““an"auan)lva b, %2 gy P O
i

a, |4l b
- G ¥ n.& t
'X\: L[““a"b)- b]“ k¥ %
\ bo"n l')""

(bta‘lﬂ-- 22
Y, ?,/,f'_y ™ ¢on sl dler : b, an
L\,-rl—“ﬁ-?——' L.o"@z-b'&o‘m = b; A,
%\"—"' _‘_J_ai__,:‘-————" AI-'-: b' Gn']

lAl bz 0 W
- / A = A, blj

t |Gu ba




THEOREM 3.11: CRAMER’S RULE

If a system of nlinear equations in n variables has a coefficient matrix A with a
nonzero determinant |A| , then the solution of the system is

o= ddh) g o dAA) L ded (An)
' dd(a)’ det (&) det (#)

Where the ith column of A s the column of constants in the system of equations.

Proof: Tl aaluaw\‘\- i o madrix s ﬂ\bifM‘P"S" of tha
mokrix of cofackars. det (A)= (Al - ﬁa.o i

(tﬁ'“wwf"”‘s"’“) det A) = |al= 4 a;;

(oﬁ" colwmn bcpamslm) L‘*&' the g Sfembe
r{.P(CSQJh‘rcdb‘ﬁ AX -'B A-‘B = T—lado(ﬁ)%
——— A
(X
G: X; Ef"\'l'upofbdzlhb) ,lv.\.‘)o
| ey (GG 18 Cr) etech
L > \

Example 2: IT possible, use Cramer’s Rule to solve the system.

a. ) -
o1 Azl ] deks (B) =0,
2% +4x, =11 90 we can’tust Cramar's Rudle .

/Nm af&;f; ool W,So Yhare' s no solukion .

| 2, inconoiglen] |

CREATED BY SHANNON MARTIN GRACEY 79



b.
—8x, +7x, —10x, =-151

12x, +3X, —5X, = 86
15x, —9x, +2%,= 187

-9 1 -190°7 - |’-M7‘0 3a.wn;l~t
) ) A\ = | 1
A Iz j’q 2 Solufion and WL com was Cromer's
J'5 ) e
st 1 =lo _ M Ly
IA \3 g " b --'s \‘.’: nuqo ‘x'l- 'Hq ‘
' 31 -2 ¢
_3 4151 -0 _-dudal
\Az\:' 7 g -5 |z -3M7 Y7 g
)15 Y
4 1 8| X = 9MS |
YA = 51”5 13 4% 6
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AREA OF A TRIANGLE IN THE xy-PLANE

The area of a triangle with vertices (Xl yl),

ldd:)‘\‘o\

=37 x,.\az.l

A tea

-~
)

L 353|d

where the sign (£) is chosen to give positive area.

Xz'yz)’ and (Xsiys) is

Proof: A

(7‘5'

..........

|
tttttttttt
|

0000000000000000000

nnnnnnnnnnnnnnnnnnnn
oooooooooooooooooooo

vvvvvvvvvvvvvvvvv

0000000000000000000

b‘l’b‘:. h-

{rop (—-—/

’fraf. L (X)), (xa,'ﬂ )16(“0) sz’d!)

haf,’,;m'- (XX, )
' ("u 9), (x,.4s), (X3 0), (x5
1o, ':’)"/*'Q_‘- (X,-X.)

o e, (x,, 0),(x,,9), (x,,0),(x,.9)
A“Taf, w-" (%,-% )
3 i[(g,fga.) (x2- X.)+(ujp+m) (x ) = (Y "‘93)(’&"@
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Example 3: Find the area of the triangle whose vertices are (1,-1), (3,-5), and

(0,-2).

TEST FOR COLLINEAR POINTS IN THE xy-PLANE

Three points (X1 yl)’ (Xz’ yz)’ and (X31 y3) are collinear if and only if

At

)(z ‘J’-' I =

O

TWO-POINT FORM OF THE EQUATION OF A LINE

An equation of the line passing through the distinct points (Xl, yl) and (Xz, yz) IS

given by

det.

Vx@l"1
X, Y |

sz ”& 'J
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Example 4: Find an equation of the line passing through the points (—4,7) and

(2.4).

IX9

4 9
2 4

'l—"\"""_'\-_ fm

VOLUME OF A TETRAHEDRON

/

-4 7‘,.

2 Y ""l-iigl:

= () ('lu-ll-l)'(ilx-wj) ¥ (‘1:&-445):0

=0

~%0 -Ux + giﬂx»f
b X *Zi-—%o =Q '

The volume of a tetrahedron with vertices (Xl Yi»

(x,

(X4 Y41 Z

where the sign (%) is chosen to give positive volume.

\(-1%401‘,

P

Y, 2,
X Yo 2,
X3 Yys 23

Xy Yy 2y

—

-— e -

e

2,), (%, ¥5,2,), (X, s,

23), and

~

Example 5: Find the volume of the tetrahedron with vertices (1,1,1), (0,0,0),
(2,1,-1), and (-1.1,2).

V=

+ 1
-6

i
0
(=
|

JI

|
o
1
I

o-

\
t
- |
|

g

L ecubic unifs
7
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TEST FOR COPLANAR POINTS IN SPACE

Four points, (X, Y1:2), (X, Y2:2,), (X5, ¥3:25), and (X4, Y4, 24) are coplanar if and
only if lﬁ

X, DI Zl '
det | X, 4 Z; |
X3 V3 Z5 )
qu g Ty | J

1)
(®)

THREE-POINT FORM OF THE EQUATION OF A_ANE PLANE

An equation of the plane passing through the distinct points (X1 Yis Zl),
(Xz’ Y2 Zz) ,and (X31 Y3 Zg)is given by

N

[x y 2z |
det X, Y Z, |
X2 9'-21"
LX3 Ys [ I

W
o

. ________________________________________________________________________________________________________|
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Section 4.1: VECTORS IN R"
When you are done with your homework you should be able to...

n Represent a vector as a directed line segment

n Perform basic vector operations in R® and represent them graphically
n Perform basic vector operations in R"

n Worite a vector as a linear combination of other vectors

VECTORS IN THE PLANE
A vector is characterized by two quantities, l&ﬂ@ﬂ" and

dlaO‘hM\— , and is represented by a diF(,CJ‘_ML | inew

S%Md- . Geometrically, a vec tor in the _P | oNL

is represented by a directed line segment with its lmhaﬂ _PONJ—

at the origin and its "'MMlﬂa‘Q point at ("u!xt).
2 o (% X3) = X

b3
—>

The same OVM&OL _Pa..lf used to represent its terminal

>
point also represents the A&C/‘b( .Thatis, X = (X. ',xt-)

The coordinates X, and X, are called the . Ar¥\ ponmi‘s of the

vector X. Two vectors in the plane U =(U;,U,) and V=(v,,V,) are %ua}

if and only if __ WA, = \,l and  Ug = Vo
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Example 1: Use a directed line segment to represent the vector, and give the
graphical representation of the vector operations.

a. u=(3,-2) b. v=(6,1)
| o
(eM
’ ~ 10 AD = 10
ﬁm
o} 0}
c. u+v d. 2u
0t 19
-
/15 H] 0 £10 S 0
: 1) HHHHF
4 _"_&/‘q
ﬁ‘? 4H

sV
+
<l

"

~
=
\

-
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THEOREM 4.1: PROPERTIES OF VECTOR ADDITION AND SCALAR
MULTIPLICATION IN THE PLANE

Let u,v, and W be vectors in the plane, and let cand d be scalars.

1. U+Visa Ve d’d\/ in the plane. {_')OSIAW(— under addition
S A
2. u+v=_V 1' W (6 rvmn &i'o-‘h\u- property of addition

Proof: Let U = (u,u) V= (v“\/z), u; vy G IK -
s
S -
"(uf\/ uf\l-,) =viuy

("l tu, \/1/} U ) o e
3. u +(V+W _@f\l +w a_SjOCIG-h VL property of addition

> . :
4. u+0=_u additive ) dent 1 +9 property
A -
5. U+ (—U) =0 additive  )NVRYS L property
6. cuisa V&U}b( in the plane. C |0 Sue under scalar mult.

Proof: Ld C(A”U;) ¢, u; R,

( “.)

z ( be); Which is a vector im tha plane
7. c(u+v)= (‘j tc!i DIS‘}'(l buhve property
> Y N - :
8. (c+d)u=_cu ¥dw Distnbuhve property
S < Qs Scalar
9. C(dU)=_(CJ U 0950(3'@1')\’3' property offnultiplication

-3 multipl cative u'oLmH%j propert




10.1(u) = _S’@ abd\/z f)ﬂﬁ—) property

Example 2: Let U=(-114), v=(0,3,-3) and W=(7,5-1)

a. U+6v b, —V+2(u+w)
= (-l,|ﬂ) +6 (a, 3/-3) = - (0/3)_.3)1. 2[{4, ',“f)*(zs:-lé)
= (...'JLq)-I'(o/\B,'”) ={JI‘3/3)+2(6, ‘/3)

s (130 1p18, 9% (-19)) 2 (0-3,3)4012,12, )
z|(=1,19,- H)_l - )M

—

THEOREM 4.2: PROPERTIES OF VECTOR ADDITION AND SCALAR
MULTIPLICATION IN R"

Let u,v, and W be vectors in the plane, and let cand d be scalars.

n
1. U+Visa u(ﬁ'of in K : closure under addition
- > -
2. u+v=yJ YW Commui’uh VR property of addition
& -
3. U+(V+W)=_(_uﬂ)+_w _A’SSdclaHJb property of addition
2D . :
4. U+0=_u additive Jde'l"_V/\ property
RN
5. U+(—U)=L additive 1 NVRY 5> property

n
6. CUis a ggﬂc‘b{ in _& . C losure under scalar mult.

> - . .
7. c(u+v)=cu t ¢V }\Si'Yl\?\u.‘H\/‘U property
- - .
8. (C+d)u= (W' - Au D\M MV‘@ property
KN L -
9. ¢(du)= ((.d)u PSSSOCIOJT‘/‘Q property of multiplication

. (@)=1d Mut. Ia(u»‘hﬁj PN}M"’(U




0l(u)=__ Set  obove

property

IMPORTANT VECTOR SPACES

K' j""wS'PﬂU*' - the set of _ yal hum b S

P

R = Z’SFGC'— = the set of all gydered  polS  of real
numbers. J

3

£ - 3. SP@CL = the set of all afﬂlcmol -!'ﬁPQOO of real
numbers.

"=
2 = N=SpPacLk =thesetofall o(o‘pﬁed n«-lupleJ of real
numbers. /

Let -;'-' (u”qz’)us,. .+ ,Un) and V = (\l, V2 Vs .. yVa ) be
vectors in L andlet € € ’?~ . Then the sum of d_ and -\7_ IS
defined as the _ Ve clor , 'JF\? = (u,1v, N PALALYY -._,Un"'?/n)and
the _5C_g.0au' multiplication of ‘l? by C is defined as the

Ve ctor eu = (ew, ,Cup,...,Cln)
Example 3: Let U=(0,4,3,4,4)and v =(6,8,-3,3,-5).

a U-V=u+(v) b. 4(u+3v)

= (-6,-4, 6, l,"l) = U+ 127
z (0, g, Iz, le, L)+
(1, 4¢ -36,36,-C0)

=|?'—‘|FZ./ |I?.,’ZJ4,‘57.)'@
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THEOREM 4.3: PROPERTIES OF ADDITIVE IDENTITY AND ADDITIVE
INVERSE

Let vbe avector in R", and let Cbe a scalar. Then the following properties are
true.

1. TheaddiHVL lolﬂl\‘hl"/) is uni?‘ou,
Proof: ASSMMQ V'I'M ,\/.
(v PR )+ V)=V J'(—'f)

( a‘r'»/))a‘ (V) =
u +(v+(-v‘))

...A
U + (J = 0
o >
U = 0.y
2 The aaul."'iv& inws-e is unf«"l_u{.
.
3. 0v=_0
-
4. c0= O
; A
5. 1f cv=0,then ¢ = O or y <O
.Y

6. —(-v)=_V

CREATED BY SHANNON MARTIN GRACEY
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Example 4: Solve for W , where U= (21—1, 314) and V= (—1,8, 013).
a W+u=-V R
> >
(wd)«‘(-u)‘ -V +(3)
W+ (u+(—-u))""( )
D F 0o --(,13 )
\U’S = (-, ,-’") J

b. w+3v=-2U
3 . 2ix (5V)
3 s (-’-\,Z,"GI’%)'} (3, "2’4; O)"'Q)
\ﬁ’ (-\,-22,7¢,-1)

. ________________________________________________________________________________________________________|
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LINEAR COMBINATIONS OF VECTORS
An important type of problem in linear algebra involves writing one vector as the

muwl Hi e |-L5

of other vectors

Swum of _Jca la/_‘

-

X =

¢, V T C,-,_Vzi‘ te Vn is called a

Vi, V,

u=(42) and w=(1,-1).

V.. The vector X :
G&M cornbin ation ,
of the vectors V;;V,,..., V..

Example 5: 1T possible, write V as a linear combination of U and W ,where

a (1 -1) |
Cu e, W = '> ¥
¢, (\ 7,) ¥¢z.(| "0 (l-\) C..fl,l') fcz(‘,") : (01‘;)
c,(+e, (1) = 175 |C.*'¢z’%
¢, (2) + ¢, ("|) 2 - Q.C."If'_z 5__
_..—__._.--—— = O -

3¢, ¢, = o ,C-.,"'T] 3% =) ¢,

wr eVasallnearcomblnatlonofU u2 and Uj.

Example 6: 1T possible,

é

( -1,7 2) u _(135) U, =(2,-13), and U, =(-3,2,-4).

c +Cu+¢
C,(s 5)+c,,,(7.-\ ‘5)+c (32,4) = (=\,7,2)

+ ¢, =- | 11 =%V ]ee$ |1 © 20 | no
%CC"%EZ +3ZC33-.- 7 >|\%-! 1|7 :’ o | 1|9 Jdlu:hof\
SCI,"'ZCz'qu: Z 53’4 000l

Ble Yo Wrike V as & Lneor combo OF-W

3¥ ‘s ndt possible Y
a,.0
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Section 4.2: VECTOR SPACES
When you are done with your homework you should be able to...

n Define a vector space and recognize some important vector spaces
n Show that a given set is not a vector space

VECTOR SPACE

A vector space consists of _j:M entities: a :l of
3[2&’1’0"9 , a set of .SCG:\OU(S , and ‘h/oo operations.

When you refer to a vector space ! , be sure that all four entities are clearly

stated or understood. Unless stated otherwise, assume that the set of scalars is

the set of (¢ d numbers.

IMPORTANT VECTOR SPACES CONTINUED

c;(" 00_,00): the set of all COn'l']nu\ous _:Fu,n( ‘HOY\S defined on
the real mmbor line.

§!|a ,‘9 !_ = the set of all _(,()I\Hnw)\ks _ ‘Fu»n chon s defined on a
Closed intecval [

P = the set of all _palj nomial s
Pn = the set of all pdyomiaﬂs of degree Sn.

M = the set ofall MXWN matrices.

= th t of all o tri .
M esetofall hXn 5%4 [ matrices
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Example 1: Describe the zero vector (the additive identity) of the vector space.
a. C(—oo,oo) b. M,

$(x) =0 [a o 00|

Example 2: Describe the additive inverse of a vector in the vector space.

a. C(—o,) (the set of all real- b. M,
valu_ed continuous f_unctlons_ M . [ N, V v Vv }
defined on the entire real line. W \ 2 3 Y
? I

O I (P

[~560)

i

. ________________________________________________________________________________________________________|
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DEFINITION OF A VECTOR SPACE

Let V be a set on which two operations (vector addition and scalar multiplication)
are defined. If the listed axioms are satisfied for every u,v, and Win V and
every scalar (real number) cand d, then V is called a vector space.

Addition
1. U+VisinV . C, |0$U~fl/ under addition
- -
2. u+v=_y + W comnrmwNaHve property
S =), = .

3. U+(V+W)= (u i’V)hAJ 'A'SSOO!GH\IQ_. property
>

4.V hasa &0 vector O

9.

> S = 2
such that forevery N inV , \J F 0=V aqditive ‘MHM

-
Forevery V. inV , there is a vector in L~

=0
> Y = :
V denoted by =N such that \) % ("\-I‘ ) . additive | nNeq$

Scalar Multiplication

CuU is in \’ . CAOSW under scalar mult.
= -~ ,
c(u+v)=_Cu ¥ CN Dis\nbubve  property

- .
(c+d)u= U 4 da Wistn buky2  property

¢(du) = (cd)U AssoC®WNL  property

10.1(u) = 4 mu.l'h?\umh\ﬁe identity

CREATED BY SHANNON MARTIN GRACEY

95




THEOREM 4.4: PROPERTIES OF SCALAR MULTIPLICATION

Let Vvbe any element of a vector space V , and let ¢ be any scalar. Then the
following properties are true.

—
1. Ov=_0
-—
2.¢0=_0
AN = - - -
3. If CV= Q , then Q=0 or v =0
-
4 (—1)V= -\

Example 3: Determine whether the set, together with the indicated operations, is
a vector space. IT it is not, then identify at least one of the ten vector space
axioms that fails.

a. The set of all 2 x 2 matrices of the form

T y

. ________________________________________________________________________________________________________|
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= (X,,'%.)() )
- (5,,4%),
3” ( 3 )’L 5) IR 4 €2

Yl ><l«><[,

1Y LA
b. The set X’EX XeR .

\) CJOSW-&["')
‘\-X (7( 7— )‘} z)l L)

g (x;"—)(?.)%'x“‘—-lx )

. (XXX, Ly ) )V

2) (anm. w\ef T

X+)( n)’L\*(’("z’ L)

(X FXy L X, *2,’()

(x“{x )J,(x l><7

= X h( / »
2 Asse. (D7 %, P EAR,) - (XA | (x, B ) (%5 D)
.;z.x)“’(X}Xs)“iX,_%-\-x)

(X,+ (X4x3), BX +(%,’< *"‘3))

- ((7‘1‘”‘1)*" (X F5% 2) ry ‘5)
= (X%, 5%, 5 X)) » (X, 5 %)

_[(x-tx )+(x,,,.%>< )] (3, 5%)

(X 1%, Yix,/
g) F Tdeaviby 8= (5 1) ¢ (0%, 0(5x))

= IJ’LX) (0 Oj

(x,fo LK. r0)
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5) t Jrveese: -)_(\,4‘ (=%.) = (% ]%X‘)-ki-\(x”ji)(lﬂ
= (RO (X=X
- (X,*'(‘XQ,A’L’Q *’("17'/)(.))
=(0,0)

N
=0 J

L) Closuce (mwif): c.i?, = ¢ (X, ,i"l)
= (e, , ¢ (B

= (¢x, ,“é_(c‘,X,\)/
Jyoist @) C (K%)= e[ (% BXD (X0 5%) )
= ¢ (X,-I—X, ,‘lz-_a(, i%)(,,)
- (¢(x,+xz_),¢(%_><.)rf‘,,-_-h))
- (ex rex, LX) rC (5%2))
= (O, CGXY) ¥ (cx,,C(5%))
2 e (x03%0) 1 e (X, %)
2 eX F t‘f; g

ODis. (1) (erd)X = (ced)(x, 5%))
= ((crd)x, (ctd)3%)

- (citd, Je(bx)rd (1x.))
CREATED BY SHANNON MARTMGR(CQX‘ C ({xl ) + (dxl ) d(,‘,’)h)

= C,_(\X; )"lel) 1 d (X,)‘l-j,x.)
= ¢X, 1 dX, /
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i) (d¥,) = ¢ d(x, ,5%%))
9 ) Assoc (muld ): ¢ de” !
- @ ax), fadEx)])
= ((ea)x,, (ed) (5%))
= (ca) (X, oX0) A

= (c.d);?l. S lﬁfo) i(»,g,)?‘-’x):)(éﬂ.%
' > s avector Space .
10) me’.}dm“n\«j: X = | (x & X

c. The set of all 2 x 2 nonsingular matrices with the standard operations.

No . Nansimauwad mad ces ha'e o Nanzero derermingny,
(Vv {o =)
A'S“J "\] ® &1 b\&

Jet (B)= ~270 and ad(6)= 170

M(meﬂwd:\‘ ‘ ] o
10 10
not olased wnder addihem.,
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Example 4: Rather than use the standard definitions of addition and scalar
multiplication in R3,suppose these two operations are defined as stated
below. With these new definitions, is R*a vector space?

a.

(X11y11z )+(X2,y2,2 )=(X1+X21y1+y2’21+22)
c(x,y,z)=(cx,cy,0)

Nd ; né mquP\!(,cd'n/e_ .o\ex\h{'j A
Iﬁ;y%):(ll\z,o)
k (‘flzo)
(1,12

. ________________________________________________________________________________________________________|
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b.
(X, Y1, 2)+ (%, Y2, 2, ) = (X + % +L Y, + Y, +1 2, + 2, +1)

Addihon c(xy,z)=(cx+c-Lcy+c—1Lcz+c-1)
\)CIOSM&‘. (Xn)%n;1.)+ (Xz ,th, ,11,) = (XJ‘X;_H, lﬁl{—tj,_’(\laﬁtz_ﬂ)

which hao COMPO“U\* ¢ Yot ae 2)aments of (AN
1) Come: (x,,to.;t.)+(v<z,,91,,’%,,)=(xnrx;r\,W’rgm,zt’rzm)
= (%, 4%, 1,989, 1) 2 42T )
= (% Yo 2 )+ (X, e )Y
2)hssoC:
(f 9.2 ‘)J%Xb,jm)il)+ (¥, 93 ;%,} (X, 9B )F (X% F ety ¥ 2 s )
> (x,%-(x,j—x%i— l)) ‘j x (%ftj}’r\)’z,r(zira,,ﬂ))
= ((x‘rx,,ﬂ)»rxs ) (4 192%)) Fys3 (22 \)+t3)
= (%, 1% |y ryh) 252 ;__1’\){- (7‘3:”)3:%3)
00,4 2 (49 2] (695,25)

)ity B = 01171
(x‘:)jl)im (-v V1) s (X, ()71 G2 10N )
] (Xl)lj”%_,) v
S)Inverst = (X9, 2)= (-x-2 ,-9-1,-=-1)

(X, ), 20 F(- ()T () F (X2 it )
2 (X (X2 51, F (g S )u(,z‘.tyy
= (=) ,-) ,-))

-
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Scalar Muky
L)CAosure: LY, ,'-2-.): (c,x\+ GV, Fe-L ezt ¢-1) which hao

compuradyinin. 66 SENONTS o s el nurbers
Tyaig effrd ) G 22))
BN A T AR FEat)
=<C, (Y,Hd’l) re-| )c(jl’ﬂjﬂ-ﬂ%c-—\ )c(%.ﬁ.z:f l) fcd)
(X PV EX Y G- ) ey 40 +cljz+(:\ +1,C2 3 E) RIe ﬂ)
- (Q“.* 1,y rem ), G2 VY 3 (expreet, Ly e e e )
LY )T (R 2 )Y
§) dist: )X, W 20 = (@cﬂ(x )+ (crd)-1, (c+d)j,+(c+d)—|;(¢+d)al+(u4)_9
= (ex b Fdx, rA-1F) Gy ) pay Fd

¢z et rdz td- v )

=02, )y d(x9.,80) )/

Q) Arssoc< Q(d(x,)tg,,%.))—* C (dx,+d-\}d~j,1—d-| ,dz. ta-1)
- (c, (4x, i-o\—l)fC—l,C(dv,fd")i'c'l,t',(dt,’rd-l)k-l)
= ((ed)x,tcd), (cd)y dcd-1 (ed)z ked- | )

= () (% ,y,2.)/

10) 4 demtibvy:

O) 3G ) (x, 9, 2)2(ix, FI-1 by, 11, 12,411
3()(”6‘,2.1)\/



Section 4.3: SUBSPACES OF VECTOR SPACES
When you are done with your homework you should be able to...

n Determine whether a subset W of a vector space V is a subspace of V
n Determine subspaces of R"

SUBSPACES
In many applications of linear algebra, vector spaces occur as a MCL

of larger spaces. A ngﬂ,gﬂ'\p‘!'lj subset of a vector SP AL isa
4V bsmp& when it is a vector _ 0 ACh- with the
. . e ybﬁ

jNﬂ’v operations defined in the __ g¢ lglf\a& vector space.

RZ. WQ\I

Consider the following: W =(0,y) and V
9

[ ] -
"""" T‘Q.Cv' %'Q'.v’?"' -
--.-: --------------- w" o '
................... /7
....................
''''''''''''''''' '
NEENNYUESIENEHMNIN = (a ‘)OOO
..... + -ttt —t—p—o—+ wz ¢
....................
-‘.l“ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘
....é ............... > .‘)
e Ty L3 w_ * (O"‘b.b

------------------

I EN WY DTS T . NS WY S W W W - " W
cccccccccc

....................

DEFINITION OF A SUBSPACE OF A VECTOR SPACE

A nonempty subset W of a vector space V is called a _,S_ub spac,.l.o of
V when h) is a vector space under the operations of add.ho’\f

and 5ca.la.( mdhphcaﬂ'nm defined in V .
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THEOREM 4.5: TEST FOR A SUBSPACE

If W is a nonempty subset of a vector space V , then W is a subspace of V if and
and only if the following closure conditions hold.
- S o
1. Ifuand varein W ,then Y +V isin W .

-
2. If uisin W and cis any scalar, then Y isin W,

Example 1: Verify that W is a subspace of V .
a. W={(x,y,2x-3y):x andy e R}
V =R?
Wis o mrnp-l':, subset 0;' \’ Let o < (a, Mc.,dq'\?‘: (v, ,\I,,'\l,)
v, )ut:“_nvu,v-;,vg,‘”\d e eR. a,i\ ew.
closwe wnder “Ad;ﬁon: E -I;:: < (“l ,ul)zul '3"5)',' (V,,Vg sza'w
Closuce under scular maft:] iv ‘ (“.f"s )WV, , (Zu,-3u,)} (zv,-‘sv‘)
u=e (u.,u,,,'b\‘-&u‘) i *: ° (“.‘Wu, Wt Ve, (2a, t2,) +F a3
c,ﬁ = (e, ,¢u,, ¢ (z“rl‘ﬂh) v (u;W, ;ui*\l‘ »2(w,rv) -3 (u "s)) v
Cﬁ"(w., Cuy, t2n - e3u;) o ca = Eﬂ.,d“t ) Z(ew) 'S(CU;) ) /

b. W is the set of all functions that are differentiable on [-11]. V is the set

of all functions that are continuous on [-11].
Since, W s nonempty) , and Can+'\nu't\') ymplis di{hméioul;l-j,
W V. Let Fand g be differendioble funchonsof e
;a-‘:f'(x) +£23(x) s f; (:Hx)fj(x)) ‘,/aosm, wndler fll?. '
Cﬂ,‘(‘F (x) = &E.‘.‘f&)] : v closure wndar scodoy mudt.

.s Wisa Subs%u. of V.
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Example 2: Verify that W is not a subspace of the vector space by giving a
specific example that violates the test for vector subspace.

a. W is the set of all linear functions ax+b, a=0in C(—OO,OO).

\5"-. ZX+S emd y,=-2X +1L ace liveac funckions in W,
Yy, Y (s ) +(-1x* )
Yy OX 7 ok £ of W, Fads closure under

addiFion . S0 Wis not & supspace of V,

b. W is the set of all matrices in M, of the form [a 0 \/gT.
[ q ] 4 | @‘
+ o = O . S

al @ |’b¢z‘€,$°acatl“v
91 & 1 dosure under addition.

0
a

=

S0 W is no¥ asubspacs .
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THEOREM 4.6: THE INTERSECTION OF TWO SUBSPACES 1S A SUBSPACE

If V and W are both subspaces of a vector space U , then the intersection of V

and W , denoted by \’ (\N , is also a subspace of U .

Example 3: Determine whether the subset C(—%,®)is a subspace of C(—%,®).

a. The set of all negative functlons f ( ) <0,

Lt ¢=-2 §(x)= St §o e Fbx) 2-2(-D¥sind)
= 10-2smx > O,

50 (x)£O 13 noF & sulogpact.

b. The set of all odd functions: T (—X) =—f ( )
The odd functiono are o honenpiyy subsd of C(-0,0) .
Let §and 9 be odd funchion . Ltk ¢ETL

Closure order’ +(F+9)(-x) = F(-x) +9(-x)
==Fk)- 9 ()
(f(x)+ ).

= "(-f+3)(x) v
L] wndwrScalar pud
S CeF)x) = ¢ (-x J" =-ef 0/
Zel-F09)]
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oo Tesd of ol 6dd funchionois a subspace of C (-0o,1).

Example 4: Determine whether the subset of M is a subspace of M with the
standard operations of matrix addition and scalar multiplication.

a. Thesetofallnxn dlagonal matrices.

@, 00O L, O O a
Let A= =
o 6 O o - - & -

o
: 9 ER.
10 00 0-‘1@] LOO"‘O"'Lm/
UoSurL\Ihdn.rf ” .. 0N G"b OQ"'O
.. 0

la 00*"01 ‘\“0 -
" .. 05,0 loagy,0---0
A+B>(o a0 0 (4|28 s |- '.°3"'*. |/
. 0" : .
0 6 7

CVosure wndey Scoflar wull® ¢ 4 -
'™ Sd’o{'allnmdcax%tsﬂ-

b. The set of all py rices wm&‘gé‘

A [’3 ik 6-0 4

Ay b ""‘-: 10] whi Gh heo & Frak of zao. (Aoswre

tr

wnder +

\NM o- SuLSf_J ﬁuto)

Example 5: Determine whether the set W is a subspace of R°with the standard
operations. Justify your answer.

W—{(x X;,4) 1% and x, € R}

X, ¢ (|,|~4) X, > (2,tMH)

-

X r ‘b) Not losed under +. \Noi‘ a Subs rau]

J—
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Section 4.4: SPANNING SETS AND LINEAR INDEPENDENCE
When you are done with your homework you should be able to...

n Write a linear combination of a set of vectors in a vector space V
n Determine whether a set S of vectors in a vector space V is a spanning set
of V

n Determine whether a set of vectors in a vector space V is linearly
independent

DEFINITION OF LINEAR COMBINATION OF VECTORS IN A VECTOR
SPACE

A vector Vvin a vector space V is called a _JtMO'f combination of

the vectors uU;,U,,...,U, in V when v can be written in the form
- - - -
V=_Cutcu, b+ uy

where C;,Gg,...C, are scalars.

Example 1: I possible, write each vector as a linear combination of the vectors in

LI
S ={(12,-2),(2,-11)}
v
a. Z=(—4,-33)
c.(\,‘L,-L) re (2,,)) =€49,-3,3)

e 42,24 (i 2|4 wd [V 0 2] &2

2e-1¢= -3 DLV |3 — o) | ¢,
20, )G, 2115 0690 0
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S ={(12,-2),(2,-11)}

(1L1,-1)

b.

ct (‘)1';2') ¥ c‘l—(?'l-|") = (" "-‘)

lC."?-(.,,:\ ) L\‘]rmf I o| %] c'g%

lcl-'cf \ - v 0o0lo t‘t

-7.(..4"('4"‘ 2\ \~l N 4

r%o,:.,& FE(2,)20,0,7) )

" Example 2: For the matrices

N 5 [05
g op(ad T T o

in M 2.2, determine whether the given matrix is a linear combination of A and B.
{ 6 —19}

-3 c -
¢ ¢ G, - e 1

7¢.¥0¢, >0 (2 o\'c'\m;_ \
-‘5c:,+5c.:s-\0\ g 5| | por wA

|| e [0 ol &€ ]
e, ¥1 ¢ 210 217 )\ |as ol-
|1 O

194
=
le,"2¢® 1 i 2|
A \—L o 1 v
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>[40 2l ]

DEFINITION OF A SPANNING SET OF A VECTOR SPACE

Let S = {Vl, Ve Vk}be a subset of a vector space V . The set S is called a

;pammg set of V when ng vector in V can be written as

a_)i!\tﬁr C.Oﬂ\bihd*;cn'\ of vectorsin S .
K 4n 5ath <05%2) ¥ 15 S0id thed S ¢pans V.

S = %(\,o,o)) (o),0), (o,o,l)j

T6 & =(u, 00 Y5 ) 15 any
vectorinR’.
e, O 9, 0)+c, (0'\‘0) ¥c, (o,oly): (u”u’_,‘,)
1¢,+0¢c,+ Oc, = u,
Oc,¥\Cy ¥OCT Ko D €=U, ,Cp7 Uy G5oug
y0¢C Xlces u‘s
¢ x0T 1 -
*,(1,0,0)ru, (0,0 +u,(00,) =0
3 —
| Sa, S spans R,
6:-.§L(|“L,3),(O,\,'L),(-|’o‘,)g
Coplanar
1 0 -\
11 0| =0 cplanar
22 )

) g
S spans e plm m R vkeee
Mw.cbrs he. S daes no¥
*
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DEFINITION OF THE SPAN OF A SET

If S= {Vl, Ve Vk} is a set of vectors in a vector space V , then the

é‘m of S is the set of all |Mf combinations of the

vectorsin S.

Spdn(s) ZCV."'C,;,'P ‘l‘C k “€,,C,. - 4

The span of S is denoted by SPM (S) ar Sf)aﬂ 3‘ ,‘;“ .e .,-V‘y_%

When SPG\'\ (S)" , it is said that V is _é@_nntd by
_i_V‘:_,_; )oo. .‘ K g , or that S & spans V

el

THEOREM 4.7: Span(S) 1S A SUBSPACE OF V

If S= {Vl, Vo Vy } is a set of a vectors in a vector space V , then Span (S) Is a
subspace of V . Moreover, span (S )is the SMG&“&S* subspace of
V that contains S, in the sense that every other subspace of V that contains S
must contain span(S).

Proof:

TIn faxt

. ________________________________________________________________________________________________________|
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A —

Example 3: Determine whether the set S spans R?. I1f the set does not span R?,
then give a geometric description of the subspace that it does span.

a. S={(1-1).(21)}
Let u-(u,,u,,) be any) vector in R .
e,(\-) ¥ ci(2)) = (w,,u,)

lc,42¢c, = &, ) T = 3 #£0 5o Pores &
~1¢c,+lc=lUhy - | Mnilf..smwhm

S spans KJ

o, s-{n2) 2031 S

7J i SESEEESES!

\559"“‘*““'“1’-7-‘(,%@00‘\’ | sussEEERSl X

..........

..........

---------
----------

........

---------
---------
......

oooooooooo

---------

c. S={(-12).(2-1),(11)}
le¥ ¥ = (v M ).

e(-12)rc(2) 4, (0)0) = (u, u.)

_¢, 1 tc, =y K 2K, PR —2c, FAc,H2C =Z:

2¢,-C. 4 ¢y =u,,f~.., 2¢, ce ¥ c,s t
3c, +3o, Zu-m1

CREATE BY SHANNON MARTI GRACEY * c
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c,”
¢ 5

=W 4 =W
3l+ =

%
A tiu,

¢ 2 +y (%)

Let U =(2,3)
2%
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DEFINITION OF LINEAR DEPENDENCE AND LINEAR INDEPENDENCE

A set of vector S = {Vl, Ve Vk} in a vector space V is called linearly

;’ldc_,?jhdw“' when the vector equation
S > - ..-6
CV + CVpt---F V=

has only the *ﬂVid solution
- = o
c.-fo, c.' 0... ) CL‘

If there are also 'V)\'\‘\'f‘.l\vﬂal solutions, then S is called linearly

__dependent

TESTING FOR LINEAR INDEPENDENCE AND LINEAR DEPENDENCE

Let S = {Vl, Ve Vk} be a set of vectors in a vector space V . To determine
whether S is linearly independent of linearly dependent, use the following steps.

JAN > = .
1. From the vector equation CvFcyV bt ¢, V20 , write
a_ Sustum of linear equations in the variables

J
C,,C,,..., and c, .

2. Use Gaussian elimination to determine whether the system has a
Mniabm solution.

3. IT the system has only the +Y|Vl 0-9~ solution,
c,=0,c,=0,...,¢, =0 then the set S is linearly independent. If the

system has non-’rr]\ﬁ 0.9‘ solutions, then S is linearly dependent.
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Example 4: Determine whether the set Sis linearly independent or Iin%arly

dependent. X
a. S={(3,-6),(-12)}
bk EIn) 2 (0,9) :
- -~ =0
Le, -, 20 be,~1C,
..BC‘*L(—'L“" O - ~6¢, 1L =9
\ __...-——-"'_5 o)

| in}in]hkj many solutions
‘ S 1S liamr\jm

b. S={(6,2.1),(-13,2)}

(oc\—c’l =0 Z(’Z—CL) r.gcz.:() - -C,=0 =»c,.* O (]Jll'jw

1¢,th¢,> 0 72 i Y
C‘.\]l Flc,? O— ¢,=2-7¢, d,"l(d)——’?clio 'HIU“;//"}//

- z Sol
l 515 Yineor\y indegendent’

—_—

c. $={(0,0,0,1),(0,0,1,1),(0,1,1,1),(1111)}

X
¢, =9Q
4 W -
CFC,= 0 = L520 o) W‘&

CFCb e, c0 > 20

L‘S 1S \{r\mrluj ’mdafmdud’ﬁ
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Example 5: Determine whether the set of vectors in P, is linearly independent or

linearly dependent.
S= {x2 x2+1} .
c)(_\_cb(‘l‘) 0 +OX 1 OX

J—
e X HCy Cte,2 o ’fo’“'o"l Lﬁ is linely inM

. o +ox +0X
(etax te - ©

¢+C,L 06— ¢ =0
¢, 0 o”‘MJ‘
fn gouy\d"‘

Example 6: Determine whether the set of vectors in M, ,is linearly independent or ]

linearly dependent. 7 © -4~ -3 -3 |o¢
} C"E#%l tCl, o | TS ]e )l

{2 0} {—4 —1} {—8 3
A= B = C-
-3 1" L0 5 [-6 17
e e b, ©LELL)H(Be) B, 70 7 0,7020:0
l,- | ¢, *’56}= o — C,L‘-‘- -%(,
...,_176| --(,(,5‘3-0 — C“_’ “Z_Cg, mhnlhjﬁ
-0
Lo, +5¢ ¢, "‘“’%W
. ¢l
\’Ihisw}e\immb depondont ‘
CREATED BY SHANNON MARTIN GRACEY /L q _ % 9) \ o 7 -
_ - I3 | 3 O
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THEOREM 4.8: A PROPERTY OF LINEARLY DEPENDENT SETS

Aset S = {Vl, Vo Vi } k> 2, is linearly dependent if and only if at least one of
the vectors V; can be written as a linear combination of the other vectorsin S.

Proof:

T Aaxh

THEOREM 4.8: COROLLARY

Two vectors uand Vin a vector space V are linearly dependent if and only if one

isa SC o aw of the other.
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Example 7: Show that the set is linearly dependent by finding a nontrivial linear
combination of vectors in the set whose sum is the zero vector. Then express one
of the vectors in the set as a linear combination of the other vectors in the set.

s ={(2.4).(-1-2).(0.6)f
¢, M) r e, (1, 2) yc (o,6)= (0,0)

2¢,7 Co =0
C}C,’ZC»L +Q’C‘3: ©

_ O ) =2 O O

DA

(0,0

—%dz 2/,%) T cz(fl;ﬁz)+—o (O/ﬁa) ’ )
L@+ dfz:?’

1(za)+2 (51, %)

po(0)=(9,0)

$s Uﬂmﬂj depunderd

—

. ________________________________________________________________________________________________________|
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Section 4.5: BASIS AND DIMENSION

When you are done with your homework you should be able to...

n Recognize bases in the vector spaces R", P,, and Mm,n
n Find the dimension of a vector space

DEFINITION OF BASIS

A set of vectors S = {Vl,Vz,---, Vn} in a vector space V is called a
b61515 for when the following conditions are true.
1. S Spﬁﬂ V. 2. Sis linearly md&pendud'
s
The Standard Basis for R’ 1) Doas S Span b

—_—

s ={(1,0,0),(0,1,0),(0,0,1)} L (19.0)bc (ofljo),rcs(a,o/n):(u.,a,,u)

‘ )C,*Oc;-\-OC;:“.—)C‘:u,

Oc, tlce FAc,” Ur— .7 Uy

OC, fOCb"lC;"dV'? C;>U,

U=, (‘,0,0)4' ul(0,1,0)+u3(0,0/\7

S S spans ?\3/

’ 2)3s S lin.ind. ?
¢,(10,0)+ 4 (010)FCy(0,9/)) = (9,0,0)

r’iﬂox C”z.:ozc"‘-":o
So Sis lineallyin dord S

Sisa basis for Q> sinee S Spans'K

MS!S ltmmj Ty %

g3
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Example 1: Write the standard basis for the vector space.

a. R5 «S - %_(!} O:’O/O;O>/ (O/ ])‘ 0/0/07/ (O(O} EJO/O)f (O/O/ o/ l"O)/ (OKO/O/O/}>E

P %
C. 2 \
0>< 0>< = | 2 1%
?(ﬂ X"+ ¥ S-gl/x,x

P ()7 OX FIx +0>< = X

rlx X -

z

PL()O‘ ox” 0%

. ________________________________________________________________________________________________________|
CREATED BY SHANNON MARTIN GRACEY 118



Example 2: Determine whether S is a basis for the indicated vector space.

a. $=1{(210),(0,-11)} for R®

%
1) Does S span 7
CI(Z',]‘KO) + C&(O/les) - (U‘,,Mz;l’t‘sj

; = (U\“UL?,/us‘)

ZC| ;t/tl--e C‘;_%’Ut‘

CfC?,: ml_> C"" uz+c 2 ZML%U\B
Czﬁb\3

L@+ﬁ:(132/57 “1";“‘2,:2')“‘3:5

Ju (1,1,0) s (0,-1,1) ° (n, Uz 93

,l(a(\fo)JrB(o;i) \) (1/1,%j
(1,5,.0) (0,2 2) = (1,1,5)
(1 *%,%)7{((,2,{53

~N

R— N

(R
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b. S ={4t—t*,5+1°,3t+5,2t°~3t°| for P,

\)])us S JPM P

’?

¢ (LH‘- T )%C (5*‘{', )*’C;; (3t*s)i'c. (21'. 3t) a‘l'.+at+a3',+a3t
qC‘t Ct + 66 ¥ c t +3¢ t’"SC ‘}'Z_Ct gc t atfﬂt]‘ﬁti‘a;[

(5¢.¥5¢,)t + t+(—-c,, 3c,)t + (e +2c,)t-a ’c}-.uahq_,t
be, +5¢, = G 0550
(8}
J Yo 3
4C| ‘1'561 o ) 0 O _3 = %Gio ’_'?‘H\LCQ‘S
- C, 'SCH‘- z 5 -y am; "
o Solubion .
. Sffamﬁ ?3. J
. . 7 _
2)%s 3 ltwb ndegrndent ° s e s 00" ool
0|0
5¢, ¥ 5S¢ = Q y o % 0|9 g\ 0
4 Cl,,): =0 )y oo0-3|9 S|oeo0lof6
C T 3- _ o . o 0oo1lo
-C, 3(,,_‘ o ! J L »
C, r2¢,= 0

do C,=C, 70 7C,7 oV

r S is a basis {vra
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THEOREM 4.9: UNIQUENESS OF BASIS REPRESENTATION

If S= {V11V21---1 Vn} is a basis for a vector space V , then every vector in V can
be written in one and only one way as a linear combination of vectorsin S .

Proof: ])AS.SU\.M-(_, S abasls jcor v, So S Spans V and S is ““W'_'j
independent, J A= cv teN, + - +C, v,\, Lek+ 5 S\AWOS"’
chca\dalaﬂsonprzswu-bv.i-bzv t-- b,V

2 —cu+c,\_/?+---+c Vi
_(-a) (53,1 bVt +Lv,)

S ~(eb i +(cb o koo ¥ (c by
¢,"b =0  ¢,-b,70,..-, ¢ b 70 [snce §is h‘marb{wkpmhrr]
¢=b, , ¢,%b,,. - -, ¢, =bs

.7 hao only one representution for Ko basis 8. /

Yoct 2 is n the fext,

THEOREM 4.10: BASES AND LINEAR DEPENDENCE

IfS= {V VoyyenV } is a basis for a vector space V , then every set containing

more than L vectorsin V is linearly okﬁ,mdznj'
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THEOREM 4.11: NUMBER OF VECTORS IN A BASIS

If a vector space V has one basis with _n Vectors , then every basis
for V has v vectors.

Proof:

1t S,* %‘;”'L,,.,,';n% Le Y baciodor V, and Lot SL:g'j”a;’__ﬂ“S
be. ounj other baol2 Sor V. S,15 4 booio and we know that S,1s
linearlyy independerdy | m<n [Ahn Y10 S, 0> lihaarb indepondent”

and 5ince S, 1S« bcwi»O) nzm[fm. di0]. ° p= m./

DEFINITION OF DIMENSION OF A VECTOR SPACE

If a vector space V has a basii consisting of - vectors, then
the number v~ s called the dimmsior\.. of V , denoted by

O\I‘m(\f) =0 . When V consists of the  72e4© vector
alone, the dimension of V is defined as Z&4O0 .

Example 3: Determine the dimension of the vector space.

b. Mg, c. R

)am;é)l;l T Aim(Mg;B dim (P.) =3)
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THEOREM 4.12: BASIS TESTS IN AN n-DIMENSIONAL SPACE

Let V be a vector space of dimension n.

1. 1If 5 5\'-;\'1 7°°°) "r» ) is a linearly independent set of vectors in V ,

then 8 is a lpaSHS for
-
|fS ?V.)"z,"')‘u% S? V,then S is a
ﬁSJS for :
Proof:

T o

. ________________________________________________________________________________________________________|
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Example 4: Determine whether S is a basis for the indicated vector space.
S={(12),(1-1)} for R?.

Dim(¢*)= 7 sinex The standard baers is §01,03,(0,1)%

c,(llz)'l‘c,,(vl) =(0,0)
¢c,+c, =0
Zc' -c,= O

—_—

___ﬁ

___————_____——————__

Since O has 2 linearly |depandent vecfors, and dn (R°)=2,
S 6 & basis for Kz [bb’)'hm u.lzl

. ________________________________________________________________________________________________________|
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Example 5: Find a basis for the vector space of all 3 x 3 symmetric matrices.
What is the dimension of this vector space?

O-+- = Oh--
. . a, A 6\1'51 ") J
L,x b sjwv\dmc Y : * Gy =%
an_ fp G Ag,% Ay
A G‘s_l': Aoz
[/ 2, 33}
r/--— l’b 1-______ AR
oo (o107 (oo Oo%ﬁ
5 = 0 0 O 0 0 OJ , ' Ps) 0 ) 0 o O )
o090 O L
- (0 00 ]
o O
?9 o | g 09
o1 o |’[909 V]

dfrn(all 3x353m.ma¢.)= G .

-

. ________________________________________________________________________________________________________|
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Section 4.6: RANK OF A MATRIX AND SYSTEMS OF LINEAR EQUATIONS

When you are done with your homework you should be able to...

n Find a basis for the row space, a basis for the column space, and the rank of

a matrix
n Find the nullspace of a matrix
n Find the solution of a consistent system AX =D in the form X, t X,

& ... G, row Vechors : (ﬁ.g, 12 Ay - "‘)aan.)
A=| .. : a
(azl ;ou.)azy - n )
a‘ml a‘mn -
(aml)amz?”') Am"")
J‘\
- a’ll\-
'6\ a 0o
]} L au\
Qa A - .
Ay, ch tolumn | i LSl R
A=l ' vedtor$ a A i
a a mlJ m1 v -
ml mn T.
or (05" )a‘l-l, Mt) (ﬁ ”)G»m,.")’ « -y

-
(G, By -+ 2y Fenn)

Example 1: Consider the following matrix.
|1 3 -1 5
|7 113 6
a. The row vectors of A are:

(1,3-1,5), (1, 13,6)

b. The column vectors of A are:

1L L) IE ]

CREATED BY SHANNON MARTIN GRACEY 126



DEFINITION OF ROW SPACE AND COLUMN SPACE OF A MATRIX

Let Abe an mxn matrix.

1. The yow) __ space of A is the SU‘L-SPF\(/-'- of R" Spannedk
by the rowd vectors of A.

2. The _ Column space of A is the subspace of R" S_panm.o(,
by the _ (olumn vectors of A.

Recall that two matrices are row-equivalent when one can be obtained from the
other by =g,lema\+o\.f9 fow _ operations.

THEOREM 4.13: ROW-EQUIVALENT MATRICES HAVE THE SAME ROW
SPACE

If an MXNmatrix A is row-equivalent to an MXNmatrix B, then the row space
of Ais equal to the row space of B.

Proof:

Tn fext

. ________________________________________________________________________________________________________|
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THEOREM 4.14: BASIS FOR THE ROW SPACE OF A MATRIX

If a matrix Ais row-equivalent to amatrix B in row-echelon form, then the
nonzero row vectors of B forma _bas)$ for the row space of A.

Example 2: Find a basis for the row space of the following matrix:
Y —2 Non2470 fow
— non2efo (0w
O g Q )™>%eco oW

Basis for thevowspaceof A
%(z,-%, l)) (5,\0,(.)5 Q(E(ll o 4/.;)’ (0/ \)n/g)g
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Example 3: Find a basis for the column space of the following matrix:

4 20 31
A=|6 -5 -6

2 -11 -16

Luways:
) Find the basis for Hhe Cow S poce o AT

N LEE R Y \v o -
Az -5 - | —> o v /5
5 b -lb | o 0 9 |

Basis for the Column space of A st
T T
%('—I)lejr/ (7,0,"5;\\)1-5 OR %(‘,0,’7'/5‘) (0,1,%) 3

2’) W She rres (ﬁ) Yo see which columns hawv-e \moﬁina )5
Ust Fhase columns in the non-reduced modTX (original A )

05 Yhe basis. :

A- ( @3:. E@,c,zf(w;g;nj
< > 9
2 -6 )
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THEOREM 4.15: ROW AND COLUMN SPACES HAVE EQUAL DIMENSIONS

If Aisan mxn matrix, then the row space and the column space of A have the

same dl-m:ﬂé‘lm

DEFINITION OF THE RANK OF A MATRIX

The o\{mmsi " of the _vYowd (or __colwmnv ) space of

a matrix Ais galled the rg.r\k of Aand is denoted by
_erCAC) (A)

Example 4: Find the rank of the matrix from

a. example 2, and b. example 3
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THEOREM 4.16: SOLUTIONS OF A HOMOGENEOUS SYSTEM

If Aisan mxn matrix,_t‘hen ‘t_hae set of all solutions of the homogeneo'LE system
of linear equations A X220 is a ,Suhspnt-(.. of L called

the nu\\ﬁ?ak& of A andisdenoted N ‘A! . So,
A =
N(A)z §X € g : AX =0 §
The d‘[mmsim of the nullspace of A is called the _n_u_“_i_“:g

of A

Proof:

In Yok

. ________________________________________________________________________________________________________|
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Example 5: Find the nullspace of the following matrix A, and determine the

nullity of A. -
1 4 2 1 O A (e ru}‘“"‘"go
A=l 0 1 1 -1 =2 |lgi1v-y\lol—1)9! Vv-VO
2 8 -4 -2 -2-94-1l 0 09 0 o(d |

X, -2x,¥5%,=0
x‘l- ¥ Xy = x'l= 0
) x3$S/xq=t
X,21s -5t , x,* ~sFt x2S, X"t 5.t eR

ﬁ

..);‘ ) (X, "7_5-5{;_\ (2 7 -5

X Y =l-set |as |0 | F T
Xs s \ .
;.x.‘ L ‘b .' L- 0 J | ]4

= —

A baoio Sor thu nullspace of A1S
1 e
L) ]e 05

ind N(A) =2 L

-
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THEOREM 4.17: DIMENSION OF THE SOLUTION SPACE

If Aisan mxn matrix of rank ¥~ , then the o\\W‘\QY\SioY\- of the

S —
solution spaceof __ AX = O is N-1r . That is,

n= o\ (k) ¥ Y\M\'\}r\j (~)

Example 6: consider the following homogeneous system of linear equations:

x—-y=0 \ -\ | ©O ey
Rl
a. Find a basis for the solution space.
- %,=0
X1 = Xq
Lek X,21 > X2t X, =T

X, Tt \
{XA ] KJA ) JC[ '}
A basis For e goludrion spauofr AX =0 i3 %J_'u]%

T Smu. ‘H\.\ &L mslsma:i 0}’%2‘09‘\0 O, Yo 10 adpo &

b. Find the dlmensmn of the solution space.

n=2 (1 columns 1n A)

Y'G\YI\C(P\\- | _

CREATED BY SHANNON MARTIN GRACEY
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THEOREM 4.18: SOLUTIONS OF A NONHOMOGENEOUS LINEAR SYSTEM

If X, is a particular solution of the nonhomogeneous system AXx =Db, then every

solution of this system can be written in the form X X T X \n. where

X, is a solution of the corresponding homogeneous system Ps X =

Proof: | ¢f -)_2 be any Seludion of AX -, 7V han (é 7 1S A&
% 6| uion JF Mmoge,mo A ‘644'\'/”\-— AX = smua,
(x XP AX AXe"lgb"O.

-
L ¥%,= X-Xp > % = Xp X/

THEOREM 4.19: SOLUTIONS OF A SYSTEM OF LINEAR EQUATIONS

Py =
The system AX 2 \9 Is consistent if and only if l:: Is in the column
space of h
Proof: va-Hr\l 535*"0“ A’X 2 b f -
a1 Ux 0, A A n
A = A 0‘1‘1. A %1 2 )(l Ay |+ X, 0\'.“' $o-o % Xn O\.m
LY am-b- . amm n am ' O\M,L -amn
BN - .Y T -
SO Pn( 2 \) |5’% L" ( e ¥ ) 15 & linaar COYY\\oIﬁoj'iGn

of the columns o T A ’ﬂ\afls ﬁqus’mm S consiStant i f

ard only i T P Subspace o¥ R™ spanned by the wlumns
“+ Ay
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Example 7: consider the following nonhomogeneous system of linear equations:

2x—-4y +5z= 8
—I/X+14y +4z7 =-28
3x -6y +z= 12

a. Determine whether AX =Db is consistent.

2451 % \ews\) L O 4 Lolumin spae of A’
AU oy« —> |9 9 2 cz) L G
5 -0 )12 g e 1 , ,,:

¢ (2,-1,3) + .G\ )G

1c,+9¢,> 3 (26 9 07 liouo
“7 ¢, the, >t oA uag oot

¢, 21l [ 120
cl':-‘»\)c_b::() - 2ot G | % g

b. IT the system is consistent, write the solution in the form X =X, + X, |

where X, is a particular solution of AXx=Db and X, is a solution of Ax=0.

’VJ-VP 5:t'- K-*"lt’r"\,v‘):t E<O

- T
swa U (2-7,3) \;
(5,4, =1,

A A 2t ¥4 1 Y b€ (dumn
X = =\ & = x\,) |¥lo . +kip°“'“"z
2 0 0 o .7 SyShom

1S consiskent
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Section 4.7: COORDINATES AND CHANGE OF BASIS

When you are done with your homework you should be able to...

n Find a coordinate matrix relative to a basis in R"
n Find the transition matrix from the basis B to the basis B’ in R"
n Represent coordinates in general n-dimensional spaces

COORDINATE REPRESENTATION RELATIVE TO A BASIS

Let B = {Vl,Vz,---,Vn} be an ordered basisfor a vector space V , and let X be a
vector in V such that

S > > .
X2 LV & GV x - TN
-

The scalars C;,C,,...,C, are called the coord}r\ahzs of ¥ relative to

the \30\6\$ Y . The coardinake matrix (or coordinate

n.
-
\fed‘ar‘ ) of X relative to ?7 is the _column matrix in K
—

whose Cow\P onu\;\” S are the coordinates of X .

),

C

[}

n
Note: In & , column notation is used for the coordinate matrix. For the vector
— -

X= (%, Koo)X ). the _Xi'S are the coordinates of _% (relative to
the  <handord bosis S for " .So you have

[;]SL.E;N
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Example 1: Find the coordinate matrix of Xin R" relative to the standard basis.

x=(1,-3,0)
S - %'(\;0,0), (01\,0) ,(0,0; ﬁi
¢, O ,OJO) ¥C, (o,\)o) Yo (o/o} 1) 2 (\1_% o)

-\ N i ’\
-g [X]S—izx

Example 2: Given the coordinate matrix of X relative to a (nonstandard) basis B
for R", find the coordinate matrix of X relative to the standard basis.

B={(4,0,7,3),(0,5-1,-1),(-3,4,2,1),(0,1,5,0)}

0~
\

¢,
2

Yoon

—2 2~ ol
; 2;‘, ;—- X =-2(4,07,%) 9,—3(0(@;\;04—‘-\(J‘B,A,’L,I)H(o,\,;@
[X]B - 4 €= U i = ("%;O)‘M ,’O* [0, ‘g;'}lﬂg) *‘(‘ﬂ-,\{. :%ﬁ) 1-(0/\,6}0)
1 Coz | > )
Y X2 (2031 -4,5)
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Example 3: Find coordinate matrix of X in R" relative to the basis B'.

(6709} (- (239 g

-

X = ¢, (U&, ,u,) ¥ dz(duul-)

(268) 7 ¢, (o) rea (3)
) (,q-—LL Yﬁ_é:roel} ¢=5
el m "’% -3l 31 . !

Elg, -1

The last two examples used the procedure called a (’,lr\o\n%}. of \90@!5

You were given the coordinates of a vector relative to a ba\S]S 6
and were asked to find the coordinates e\ CU\"I\/‘!-* to another basis
B
(,x 'J
-~ I
The matrix P is called the ’frané I‘hOY') man’nL. from %

Y - .
to 6 , Where L’C)E’ is the coordinate matrix of X relative to B

—_ —
and Y)(l& is the coordinate matrix of _ X relative to & . Multiplication
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%
by the transition matrix f, changes a coordinate matrix relative to B into

a coordinate matrix relative to & .
/

Change of basis from E) to @

P [x Y,x‘}

/
Change of basis from 6 to ev :

[x'&e P [x][,,

The change of basis problem in example 3 can be represented by the matrix

tion: -
equation P _ Y:E—_, 551 | g’)(—l Y‘ ‘]
\ -2 -4

P = —0 -’l—t.l

THEOREM 4.20: THE INVERSE OF A TRANSITION MATRIX

If P is the transition matrix from a basis B’ to a basis Bin R", then F is

/ ~\
invertible and the transition matrix from ED to B Is given by l :

CREATED BY SHANNON MARTIN GRACEY 139



LEMMA

Let B={V,,V,,..,V,} and B'={u,,u,,.
It

“ Un} be two bases for a vector space V .

V, =C,U; +C,U, +---C U,
V, =C,U; +Cu, +---C LU,

v,=C,u +¢c, u,+---C U

n

/
then the transition matrix from 6 to b IS
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Proof (of Theorem 4.20):

THEOREM 4.21: TRANSITION MATRIX FROM B TO B’

Let B={v,,v,,...,v,}and B'={U1,U2,---,Un}be two bases for R". Then the

-1 /
transition matrix E from % to 6 can be found using Gauss-

Jordan elimination on the nx2n matrix [B’ B]as follows.

(6 6] =[x.°7]

Example 4: Find the transition matrix from B to B’.

3= {(11).(L0)}, B'={(1.0),(01)}
) 1

Y_@ 6] :E)? :lol

(4

v
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Example 5: Find the coordinate matrix of P relative to the standard basis for P;.

p =3x? +114x +13
' 1- 7,
Standacd b3S §or 0,0 1 FOx +OX tOX G)H-lx +0x !'():C ),

05 + 0% +\X «—o? 0%°+0% FOX F1X

]
V, K X%

5 = 15() +\\~\(x)+9(70"'+0(><”)

P
[P] “‘*

0

__.n’

. ________________________________________________________________________________________________________|
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Section 5.1: LENGTH AND DOT PRODUCT IN R"
When you are done with your homework you should be able to...

n Find the length of a vector and find a unit vector

n Find the distance between two vectors

n Find a dot product and the angle between two vectors, determine
orthogonality, and verify the Cauchy-Schwartz Inequality, the triangle
inequality, and the Pythagorean Theorem

n Use a matrix product to represent a dot product

A
il = \fm
i)

IS \] ('\h}

|V

\ : ]"‘Jb]

n >
~N—

v, |
DEFINITION OF LENGTH OF A VECTOR IN R"
The nggnq{’l«\ , or ngvm of a vector

V= vl,vz,...,\i‘n/)in " isgiven by

IV - {-v,"%v:f---ml Vo

When would the length of a vector equal to 0?

IWhea 1125 Yhe zero veckor,
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Example 1: Consider the following vectors:
lﬂ” U V) Uv

u :(1,£j v:(z:ilj
2 2
a Find |u| = AT 35y

—_—
-

b. Find V| > J () y ()"

e
7
> 4

c. Find ||U+V|| = “ (%,U)“ F(hd ”lﬂ\ + “\7" Y T

(7 (5 +(7)
12

d. Find [3u] = (3,3/L)|\ Find 3“0“\ 2% (%) - 3\,_[%
> {ay®u |25
Z

Fg_f*

e. Any observations? “-()-‘34_;7“ 2 n& “ Jr“(/)\\
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THEOREM 5.1: LENGTH OF A SCALAR MULTIPLE

Let Vbe avector in R"and let Cbe a scalar. Then

o3 l=lellvik
where ﬁt is the O\b@lt&tﬂ-— \/G&UUL of C

Proof: (','VA - C(\’”V.“ \j ) —» ”Cj“""lclm:
7= (v, eV, - eV, ) e =Jelvll,

—

eV 1= e s (v +-- 1 (V)™
1/\//-
”\':- WO .-~1—C,L\/L
”C/\,( C \/| +C \/2- T n

1~

S P AT A

THEOREM 5.2: UNIT VECTOR IN THE DIRECTION OF V

If V is a nonzero vector in R", then the vector
- ]
= =
Tkl
has length | and has the same oﬂifﬂ,C,“’;Oh as V.
Proof: \|e ¥Now ﬂ‘ladf‘\? % 0. 50 “\: | 'S dQ‘Hf\Lq aﬂd‘OOSEHJQ ,
and u\ C N be Wriften as a POS:h\/&__,\SCa&M ﬂ)L V
- \ 'V “
W= —— "V omd Ul = {|757]] = |
KL il 1> /
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Example 2: Find the vector V with ||V|| =3 and the same direction as
u=(0,2,1-1).

P i) Tiis is o unt

= veckor in A directon
gl (o) +@) () ) d?’;

- ) (0{7_/ \/"l)

A
> > 3 V) = |35 (0,20 A1)
V=20 _ 2 (o7, 1
SO 5m (E / ! ___E__...-—
D
A -l::'(u”ui,)
9 V= (v,,v.)

o d@v) U“\»D 4= 10X ) F (g )
AN 63 AT Ty

v

a(ay)= o3l

DEFINITION OF DISTANCE BETWEEN TWO VECTORS

The distance between two vectors UandV in R"is

MG T) = |&-v\]

. ________________________________________________________________________________________________________|
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Example 3: Find the distance between U=(112) and v=(-13,0).
d(@V) = a2
= " (2/‘2' JZ) “

@) +@)
1
p X,
L 0f (05182 ¢ = & tho - LabcosC
i I~ (3 s WG 21w cos &

1 (a v )1'.,' (Ul v )7' = u"l'-\-u: "2.”““”\’”(659
. Ly Dy D b= iR IR Deose
SR AN -2, - 2ty = ~2 BN ) cos®
I\ e v, FuVo = Wl lcos &
\N ll U, 7}
N > (st @ Dt product
of T whty

[ “”\I“

DEFINITION OF DOT PRODUCT IN R"

The dot product of U= (Ul,Uz,---,Un)andV = (Vl,Vz,---,Vn) is the _Scalel
guantity

S >
u-v = U,Vl‘l' U¢Vz‘]‘--'+un\ln
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Example 4: Consider the following vectors:

u=(-12)  v=(2-2)

a Findu-v = (-N@) +(2)2)
-G

- (DR) + V(L) I m
-2

=18

b. Find V-V
T
vV = |9
c. Find ||U||2 = I-J’ﬁ

= (NE)F@))

-
r—

d. Find (Uu-v)v = =¢ (2 ,-2)

" (’\7-/\2-> )

e. Find U-(5V) = (_1) L)' ()d}-lo) -:-.
s (000)+ (2)(-10) 730 |
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THEOREM 5.3: PROPERTIES OF THE DOT PRODUCT

If U, Vand W are vectors in R", and C is a scalar, then the following properties

are true.
_ =
U

1. U-v=_\

N §
u-v +

2. Uu-(V+w)= W
—y
v

3. C(u-v): (C‘l:)-\s/ =
Il

Ik

V

4. V-V =
—
)

5. v-v>0, andv-v=0iff y =

Example 5: Find (3U—V)'(U—3V) giventhat Uu-u=8, uUu-v=7 ,and V-V=06.

\)

23 (439 )= V- (w- 39 ),
PR -ARV-N R BV
3(3)-4(1)-u-J ¥3)
24-462%-7 18

:'L-ZS

1]
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THEOREM 5.4: THE CAUCHY-SCWARZ INEQUALITY

If Uand V are vectorsin R", then

Ja-v| 4 il

4

where \U" V denotes the 6-osolJ 2 value of U-V.

Proof:

Cise ' T 720 +hen |7 ] =10) 20 and WENIVD=0IV 1) = 0./

(ase - (on 70, \e LER and cons 1ded” £ ¥V S ING&
(£04%)- (43 192 0, it follows Fhal

G HfT) £ (2I)4TT 20

t‘(a.a)+2t(ﬁ-v)+ JJ =20 ) |
f aaid b= 2(39), e=VY, at rbtF L 20 Sinc
he OBAMY(;]';Q 15 uwvexr mgcd'we,) V¥ ethar hoo no weal ot
o (. SIngle e(eofed 00t Trwo 170Phe0 Fhal

Lt-tac €0
L,L < Yac

y (33)° ¢ A @IE
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Example 6: Verify the CauchySchwarz Inequality for U= (-1,0) and v=(11).

ﬁ|4Humh"
\(,, 0)- (I l7|<mﬁo+a
|| ¢dT

lr‘/

DEFINITION OF THE ANGLE BETWEEN TWO VECTORS IN R’

The m\_ﬁ) Je ©  between two nonzero vectors in R" is given by

\z

Losé = ,,/"’-" 026 =T
INMW

Example 6: Find the angle between U=(2,—1) and V=(2,0).

(’LJ‘I ) (2’107
oS © =
4
wse-quf-
(o =

f oqgﬂ
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DEFINITION OF ORTHOGONAL VECTORS

Two vectors Uand V in R" are orthogonal if

a2
w-v =20

Example 7: Determine all vectors in R’ that are orthogonal to U =(3,1).

0V =0 Let v,=t

(’5}\)'(\!,)\/2)30 —:G: (’%t)‘tv :-.-t(-.%) ‘))tez’.]
2y, tV, =0

\l,:"%'\lz

THEOREM 5.5: THE TRIANGLE INEQUALITY

If Uand V are vectorsin R", then

R Nall #17))

Proof: “34.7 "-., _ (aa*_?),(aﬁ;) ]ﬁ'\?\é “ﬁ””\ﬂ‘
PV - (

=% (G+V) ¥V 217 )
- D -
T ATV RV MYV
D I
Ot A
s g (g9 IR
=il 4 2(@-v I,
= Rl + a3t 19
* T Sl
past 22 adl rivil o
< 1N 2RVl +iiv
(iR + RN



U7 and (180 H1F])) ore ronnesskive
gl < 1@+l

THEOREM 5.6: THE PYTHAGOREAN THEOREM

If Uand V are vectors in R", then Uand V are orthogonal if and only if

la Il = 1l eI

Example 8: Verify the Pythagoren Theorem for the vectors U =(3,-2) and
v=(4,6).

162 1@l = el K@l
1 =750+ (52)
- 5ol
(5 =65V

65
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Section 5.2: INNER PRODUCT SPACES
When you are done with your homework you should be able to...

n Determine whether a function defines an inner product, and find the inner
product of two vectors in R", M., P,, and C[a,b]

n Find an orthogonal projection of a vector onto another vector in an inner
product space

L (xy) vs ¢ (xrv)

DEFINITION OF AN INNER PRODUCT

Let u, vV, and W be vectors in a vector space V , and let C be any scalar. An inner
product on V is a function that associates a real number <U, V> with each pair of
vectors U and V and satisfies the following axioms.

1 (uv)= (9,0 5 K’( 12 (fs,»\ﬂ
2. (U,v+w)= <-l;;q> +<ﬁ¢3> =5 (")

- =95
3 cluvy=_<cd, 8 D c{ (12) 1))
4. (v,v)>0, and (v,v)=0iff _ = 5 - (;-35/“’)' GA)

NOTE: “The dot f)rdo\wg\' 1 an Xample of an ;Mrw_
7-V 15 Hu dot p"°°‘“‘d (E\Ac\idw/n TN produck }orﬂ“)
<‘(;’G> VS ‘H\L jW&Q_. tf_w;frbﬂtd_(l_“' Fo( a—'\/QCJ'U( S'paCe\/

.

A wedtor gpace V withe am inner product is calleol,

N \nney’ Produ-c)r SPAcL .

e —
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Example 1: Show that the function <U, V> =u,v, +2U,V, + UV, defines an inner

product on R®, where , U=(U;,U,,U;) and V = (V;,V,,V;). t) U Vi, W, e
D (V) = u VAT fug,
- \’Iul +l\lLlAL+VBu3 ({m\ nb\mbﬂ.\"s oax e comm.)
=i/
V) LB, R = 0, (kW) F Lu, (VAW ruy (v rw,)
20N, YU 20V, R, F gV, T W,
- Lu,\l\)r'?_.utuﬁu;_\lz F U W, 3 L YW
=3V LR
XIY LR,/
D) R Ty = ¢ (W F i rugs)
:(’(‘,U}l. \-2_((‘_11\}\’1. "(C‘*?\Ifb
= {eR Y

)

L\) <3,“\3f> vl\(,+2\!,‘,\h.’f \'3\’3
VALV RV 20
ﬂusc)’uareof-m(&iﬁ?—o
34 = \’|2V1=\’3:
<\’J“> Q -Eb S 6) - '6\ /

Vi 1Y kv =0

]
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Example 2: Show that the function <U, V> =Uu,v; —U,V, —U;V; does not define an

inner product on R®, where, U=(U;,U,,U;) and V =(V,,V,,V;).

LQ,‘\' ‘i‘) = ('—\/%/6)

(Y = (NE)- (3)(3) - (3)5)
> [ -9-19
= =33 <0

FW\S 0\)(10?\"\ L\ .

THEOREM 5.7: PROPERTIES OF INNER PRODUCTS

Let U, vV, and W be vectors in an inner product space V , and let C be any real
number.

3. (u,cv) ('_,< >
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DEFINITION OF LENGTH, DISTANCE, AND ANGLE

Let Uand V be vectors in an inner product space V .

sV
)
N\
g2
<L
~~"

1. The length (or _NOYM yof uis ||

—
2. The distance between U and Vis o\ ( V ) u

3. The angle between and two vectors U and Vs given by

LUN7 04047

tos© 2 ||ull\|"‘\\

>~ -
4. U and V are orthogonal when <UL,\I> -

If “ﬁ “ = | . then U is called a UY\‘\‘\' vector. Moreover,

if V is any nonzero vector in an inner product space V , then the vector

)
U= —— ,
\\j \\ is a UJ\\'\‘ vector and is called
the U\\m{’ vector in the cﬂ]('{d‘i oNn of V.
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Inner product on C[a,b]is (f.g) 5 §(’(‘)5 (X) dx

kRl
Inner product on M, is <A B>_ a by T4y ‘° i—an.\ol’\,

(p-q)= a b, Yab f-- -+ a b,

Inner product on P, is , where

1 n L n
02 Oy AXFOK - Y6 X and 43 bs FOX ¥bX +-- - +boX
\ (=4

Example 3: Consider the following inner product defined on R":
:(O,—G) ( ll) and =u\Vv, +2U, ”ul\ -{ ﬁ‘;\\>
a. Find { < (07 (’) &, ')7 = L )W) Yoy

= (0)(-1)+ 20

—
—

o, Find [l -44 0-), (0, g) {”

c. Find |v|| = N vjz’# J, @

=V (=\,D, () \)/ T, 007

= (¢ n(-\) +1(ﬂ(
d. Find d (u V) = |\B- mm

=|l(0,-t-)-(*-|,l)l\ = r
=Ly, =|» W

ﬁ
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Example 4: Consider the following inner product defined:
<f,g>:j_llf (x)g(x)dx, f(x)==x, g(x)=x%x"-x+2

b
a. Find (f,g) = Sjt(x‘)o(x)

- i (-xX) (X=X 1) dx
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c. Find 9] ={{q 9>

) W)g&)aé

———

=W_x$ P X AR -2 LA -1 +a)i
> A LA ks

2|2 ple
2249

B

: (S /\ - | (7%
ez = N ol d—‘_‘;
:W =£
‘ T T
( GJ,i)( +AX \"X"‘ /—F_;OPC(‘HQ Y ;j f@rhas of o\hh:xf{
_ N 1 3) >0
{“7'35 - (4 -4 —4) NIl >0 Da@Y) N
> (f;* S 3 Z)Hm\zo'%ﬁ__o ?,)d( \,) 0 u
-5t 8 Sleall= iz [3)d@3) -4 )
1= |
. ﬁ)&“ |
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THEOREM 5.8

Let Uand V be vectors in an inner product space V .

S S >
1. Cauchy-Schwarz Inequality: l,(lf,\, >| 3 “ W ”HV “

2. Triangle Inequality: “a\ ‘|'$“ < “TA“ ¥ ”G“

3. Pythagorean Theorem: Uand V are orthogonal if and only if

el = 6]+ 81"

0 1 1 1
Example 5: Verify the triangle inequality for A= {2 _J, B = {2 _2] and

<A’ B> = a1lbll + a'21bZl + a12b12 + a'ZZbZZ .

. ________________________________________________________________________________________________________|
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DEFINITION OF ORTHOGONAL PROJECTION

Let Uand V be vectors in an inner product space V , such that vV # 0. Then the
orthogonal projection of U onto V is

projs AR

D

v

N
Y
<)

THEOREM 5.9: ORTHOGONAL PROJECTION AND DISTANCE

Let Uand V be vectors in an inner product space V , such that vV # 0. Then

4 (i, projgd ) < A(&,eV) | 7 =

y 1
;-l >
3 o\ *M (2,))
0 = (52) ki (20),@N
-G - (7_!‘7 < 2, 1), \E
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Example 6: Consider the vectors

dot ?roo\uo\'

/\/_\_/_\
u=(-1-2) and v =(4,2). Use the Euclidean inner product to find the

following:
a. proju

G2 3
XD,

EFEARCYY
- (M) (42)

—_
—

(A1)

b. proj,v = <-\Tza> ﬁ

A2
LEw7

----

..........
......

-----------

e

tttttttt

00000000
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Section 5.3: ORTHONORMAL BASES: GRAM-SCHMIDT PROCESS
When you are done with your homework you should be able to...

n Show that a set of vectors is orthogonal and forms an orthonormal basis,
and represent a vector relative to an orthonormal basis
n Apply the Gram-Schmidt orthonormalization process

. . 3 . .
Consider the standard basis for R, which is (',";0)‘(0,1,0) = O

= \0,0 (0,\,0 0.«0;' (IJO)O)»(OJO ) O
»S %( ( )l );( )g (O,IJO)-(O,/O,I)zO

V)

This set is the standard basis because it has useful characteristics such as...

The three vectors in the basis are W’IH‘ v‘(ml'of'ﬁ , and

they are each mm/&nmll3 or%ajona\ .

DEFINITIONS OF ORTHOGONAL AND ORTHONORMAL SETS

A set S of a vector space V is called orthogonal when every pair of vectors in S is
orthogonal. If, in addition, each vector in the set is a unit vector, then S is called

or)fhonormd .For S = {Vl,Vz,---, Vn} , this definition has
the following form.
ORTHOGONAL ORTHONORMAL
QA Q2 0 C
: - T 47 1. . ;
. <V£}V‘j>'01“#J <VIJVJ>} '#.)

2. IVl =1, i=0,2,3,m

If 3 isa bo\si 2 , then it is an al"i’ho?onoj— basis or

an__ oy i’\r\oho( ma.D\ basis, respectively.
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THEOREM 5.10: ORTHOGONAL SETS ARE LINEARLY INDEPENDENT

IfS= {Vl,Vz,---, Vn} is an orthogonal set of __hon 20 vectors in an
inner product space V , then S is linearly independent.

Proof: W4 ned Yo S how H'la* c,(r’l -I—(_,_G,_i---"\‘ Ch?lnz 0o > ¢=¢,°
S PR - D
<("-:‘4+sz"+-“+€"‘\," )/ Vi7 B <6/ '\Ti >

= - > _
CI. <$‘zvi>+c"-<\-f2.zjl> R L <’\7| I\l;7+-“+cn <\/n,\f;7 = 0

¢, (0) +¢y (0) +-+ LT, Uiy Tt ¢, (0) =0
¢ (Vi Ny > =0

C.‘“\—?;”lzo

vl #o

So C, =0 .

L oeveny €20, and dha sof S 75 lingacly independand .

THEOREM 5.10: COROLLARY

If V is an inner product space of dimension n, then any orthogonal set of n
nonzero vectors is a basis for V .

CREATED BY SHANNON MARTIN GRACEY 165

.---3(';-0



Example 1: Consider the following set in R*.

{(\/To 0,0 3\/170}(0’0,1,0),(0’1’0’0) (_i » \/—J}

10 "7 10 10 10

a. Determine whether the set of vectors is orthogonal.
(m/;olozol’%m/\o) ! (D O ! O) y
/tO) (01,0 0)7 0 —

( /10) /
) Thio sef s orthegonal
(W/m’o/ 0,3 ﬁa/lo)' (-3“1540*‘)’0/@/\0) = d Sine 113 \/ed‘or?aa'

K:jjﬁhmoJUQQ ar+#«{79naf%,

(0,21,0):(0,1,0,0) =
(0)0, 10) '(—Bﬁ/m 0, 0,41_“3%) = O

(o, V00 )'("m/ta ,0/0,‘\“—"/16) = 0

b. IT the set is orthogonal, then determine whether it is also orthonormal.
I (W/b,%oz?"“g/\o)l\ = | —
“ [O/OI 110))\ §

,Sl.l’l('.ﬂ- Hhy seris A
W ovthogonad amnd each.
1(o,,0,90 > o s g o1

I (%) 0,0, %I = | |

CREATED BY SHANNON MARTIN GRACEY 166



c. Determine whether the set is a basis for Rq.

lgw once the sef has Y vectors and it's ori"koﬁomﬂ. .

THEOREM 5.11: COORDINATES RELATIVE TO AN ORTHONORMAL BASIS

If B= {Vl, Voo Vn} is an orthonormal basis for an inner product space V , then
the coordinate representation of a vector W relative to B is

B > 7
= LB VDY ROV LW

Proof: Slna B )S A bM|0 700( ‘j”'\g_ |nw Pfddu&]” w&c—b\/ 3 UJ'N?'MK/

-
Scalors ¢,,¢, .. .,Cu 23 = ¢,Y, *c.,,\‘z* “1CVa

<\‘3,Q}i>: <(¢_,\||-|- C'z,‘Jz, - - TChVn )J-\?; >

{0 S= ¢ (N, ;\7] DAl Cz(‘i/-\?i>‘r ok GGV G
(‘“’7% (o)+ e, () re-k GET VD1 Hea (o) %moymﬂ
(N\, > (', K% ||

4 > (\-/ (0 C B (s O(‘ﬂqonormauos //
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=
The coordinates of W) relative to the Of‘H\oﬂofmaQ basis B

- .
are called the Fc)w' e coefficients of W relative to 6

-
The corresponding coordinate matrix of W relative to fb IS

L_"z]gz {C. ¢, Cs - ]
:{4 37 <U°\’z >]

Example 2: Show that the set of vectors {(2 —5),(10, 4)} in R?is orthogonal and
normalize the set to produce an orthonormal set.

(2,3 (10,4) = 20-20 20 50 Hh et I5 orFhogoned.

_{%—’:—2—= (1,-5)
el 3 (%0 ), Ve, )%

(\O,q) (10%) (wq)
n(nouv)ll ATie u‘q
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Example 3: Find the coordinate matrix of X = (—3, 4) relative to the orthonormal

_ B_{(\/g 2@]( 2\/§ \/gJ} ,
basis P =Y Y ¢ "'l T ¢ ' in R°.
5 5 5, 5
Vo

-J‘_: I T
-Q];‘_(x,v) <><,u¢.>]
(30> (—3%)-(‘5*"‘5)‘ IS
(X (3 (FE )71

LLX}B:EZG]/)

. ________________________________________________________________________________________________________|
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THEOREM 5.12: GRAM-SCHMIDT ORTHONORMALIZATION PROCESS

1. Let B = {Vl, Vo, Vn} be a basis for an inner product V .

2. Let B'={w,,w,,..,w }, where W,is given by

W, =V,
(Vo Wy)
W, =V, — W
2 2 <W1,W1> 1
W, = v, (vs,w,) - (Vs W, ) 2
(W, wy)  (w,,wy)
R R R T R
W, , W W, , W W, W -
" " 1 1 ' 2 2 : n-1 n-1 "

A
3. Let Ui = ”W—'” Then the set B”={u,,u,,...,u,} is an orthonormal basis for

V . Moreover, span{v,,v,,..,V,} =span{u,,u,,...,u,} for k=12,..,n.
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Example 4: Apply the Gram-Schmidt orthonormalization process to transform the
basis B = {(1,0,0),(1,1,1),(1,1,—1)} for a subspace in R®into an orthonormal basis.
Use the Euclidean inner product on R®and use the vectors in the order they are

glven
'\J \l (\ 0 O)
_{J} < B W‘ (\)\J\-) - (|}|l|)'(l)0f0) U'O’O) ]
(R WY (1,00)-01,0,0)
S, = (10 (\)(1007 _(o,1,1)
N N BTSN
éh.)”\fo|> \:31.;$?>
GE} \J-\) - (\:\f')‘ ('}Olo)iw)-——-}_ (‘;\:'D'(O,‘,O @,l,l]
R (10,0) (1,0,0) (011)-0)
)

3

= () -)- (n(\,o,O) Q_‘__QX
1

53‘3(0)‘,_\)
5 010,0) (0,1,1),(0,1,-1)C B0 or%ogomi suf
8- (0o % |

=S N)i (\ ) uQ (O \ |‘)
W= — = = 1' = / |
| _.bl\ I (| ) U, 1\\,\)&“ ---——"\’FL_ = (0/ Kﬁ:/kﬂ)

Ny (011)
T L (o, e, a)  pr- 20“0) (9, /L ),
(0 /f"z" /ﬁ)g
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Section 5.4: MATHEMATICAL MODELS AND LEAST SQUARES ANALYSIS
When you are done with your homework you should be able to...

n Define the least squares problem

n Find the orthogonal complement of a subspace and the projection of a vector
onto a subspace

n Find the four fundamental subspaces of a matrix

n Solve a least squares problem &

n Use least squares for mathematical modeling

In this section we will study 'm(_onf.?sjfu\ﬁ' systems of linear

equations and learn how to find the b&OJf
\Pos{l b\{. S0 \U*](SW\' of such a system.

@,Faf"'d Ll XY
' ¢, He, = |

0, @)

c,6+le, = 1.5
) ) — N
7 S
a2 = \ ‘ KVO'X
¢ —
42-TI a-f ! & ik
LEAST SQUARES PROBLEM | 2.5
Given an mx nmatrix A and a vector b in R™, the thf
D
DANGNLR problem is to find _ X in R™ such that
P__) = || . - .
IAX-Bl is m.mmm}w\,
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DEFINITION OF ORTHOGONAL SUBSPACES

i e
The subspaces S; and S, of R" are orthogonal when _V, "V, = O for
all Vi in S; and V, in S,.

Example 1: Are the following subspaces orthogonal?

0|1 0
Sy=spany| =11,]0]r 4 S, =spanq|1
110 1

157 space Lnd SPA0-

(o-\) )-(0,1,1) =0 YSO S| omd S, o(“Hr\oDO\mG& ,
(1,0,0) (0,1,1)= O 2

DEFINITION OF ORTHOGONAL COMPLEMENT

IT S is a subspace of R", then the orthogonal complement of S is the set

\SJ-:gaé'Kn:i;'x 20 J—a(o.QQ,vzd‘or’Svtgg

What's the orthogonal complement of {0} in R"?
n
Al of R

What's the orthogonal complement of R"?

108
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DEFINITION OF DIRECT SUM

~ n
Let S, and S, be two subspaces of R" . If each vector _ X € R can
—

N
be uniquely written as the sum of a vector 3, from 8: and a vector Sa

Y - ry
from SL ,_ X = S, ¥ 3. ,then K s the direct sum of 8.
n _
and S:. , and you can write TL - Sne 81,

Example 2: Find the orthogonal complement S+, and find the direct sum S®S".

" 07) (onsider the Fronspost - (o;,-\/l)
1 |
S =span 1 (\’()/O/o‘)’(O,\!l,O)I(O/O/l)r I)
1

N

THEOREM 5.13: PROPERTIES OF ORTHOGONAL SUBSPACES

Let S be a subspace of R", Then the following properties are true.

1 dim(8)+ dim (S*)=n
2 Rn > 3 G’S‘L

(55 =S
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THEOREM 5.14: PROJECTION ONTO A SUBSPACE

I {ul,uz ----- Ut} is an orthonormal basis for the subspace S of R",and ve R" |

then R S e RS R
P(O;} S_{; = (-\7"—:1)(“.)1‘ V‘U\z,)(“‘z Fooot (V'ut) Ut)

Example 3: Find the projection of the vector Vonto the subspace S.

— — — — — — —  —

“L10110 1 S5 or*{f\Ojova buy not
2110110 1
S =span ol llolf Y=y novomad .
0[]0 ]|1 1
UIRERRSNES) 1]
W, Wy W,
Y 2)
. Nl -—‘ LOO ) 7 T
U= = (__’,_'})—-_ ( /«3,/{3,‘3/0)
W, <
A D
ulv:w"b
AN -...b
U\,\', W-b

'Ffo"ési = (\}\J\’\). (.‘/{3,2/@!0/0)(-%—9-)%4%,0,0)
+ (‘,|’.‘/f)'(0,0, ‘}o) (0/ o/‘/O)

‘}- (lf‘z\;I).(O/ola/‘)ca/o/o/‘)

- J /0
{3 (" /fs ;,L/rs- 10)0 )%’ \(O/OIIJO)‘\" (l)(O/O/OJ))
= 1'2'" 9,9 1-(0/0,\{0)4 (OJO/O)‘)
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THEOREM 5.15: ORTHOGONAL PROJECTION AND DISTANCE

Let S be a subspace of R"and let ve R" . Then, forallueS, u# prOjSV,. 7\1
N - ">...._> {0)5
”V—Pm.)s\, né n\l LA“ 74/@ N 0\
/ / N~

Proof:)__a: 'ﬁ éS "t: A 9(033‘3
\J U = (V-PfOJ V)‘l- (PTOJ? ""ﬁ)

>
b

- - s + . )--\ iy
V ul\ "v Prot’sv "Prdjs\/ u" %pfon e SS
“V"u")"v—ffoéb\' l// ondv-?rkoJ-
S0 %wcon we-t—-
‘”'\& P\oﬂh?ﬂaﬁ/
H\n.o"m S
C 3 u:l.‘ Pﬂ‘JS‘ , 9P

FUNDAMENTAL SUBSPACES OF A MATRIX “ ')f'o:, s - '."'“ >0
Recall that if A isan mxn matrix, then the column space of A isa

m
SMb_&PO\U- of R consisting of all vectors of the form A§ :

)(_ é K . The four fundamental subspaces of the matrix A are defined as

follows.
N (A) = nullspace of A N (AT) = nullspace of A’
R( ﬁ) = column space of A K (AT) = column space of A’
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Example 4: Find bases for the four fundamental subspaces of the matrix

Calumn Spac of - 1
VJ 0o 17 RIA)A apmﬂ H}
0‘% o T -‘ '

(a\umns‘huo-}k.

o)

NullSPauo-g-A ]
170x |0 x, +wx =0
[H -tleL *|o :
— | X 0 Xam X2 Q €%
e B : %’é’:{i; -2t
N \-1t -‘L- X'_ = X =t
X oy =\+. \=‘t\| o
A Led b e s S
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THEOREM 5.16: FUNDAMENTAL SUBSPACES OF A MATRIX

If Ais anm x nmatrix, then

1. K(ﬂ) and N(AT) are orthogonal subspaces of 7\“ |
2. &(AT) and N(ﬂ) are orthogonal subspaces ofL
> R(A)Y® N(aT) = ™

R(AT)D N(A) - | 2

4.

SOLVING THE LEAST SQUARES PROBLEM

Recall that we are attempting to find a vector X that minimizes “Ai b “

where A isan mxn matrix and b is a vectorin R". Let S be the column space

of A: ,; - &‘ A ) . Assume that b is notin S, because otherwise the

system Ax =Db would be _C,_ms_stﬂ.h‘\’ We are looking for a

vector AX in S that is as close as possible to L This desired vector IS

the _P(O‘}QOI'_I-m of ~g onto S S&‘ s( = ‘)(o‘\,sb

A
oY .
and Ax - b = Pl'o \c s —= is orthogonal
to > (f\ . However, this implies that ﬂx - L isin

Q( ﬁ‘_“ 2 , which equals __fN (AT_) . S0, Ai “-‘: is in the
ML&P&U. of A-r .
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A" (AR = b)
T __'TL = O N
A" AX AA“‘A - AL

The solution of the least squares problem comes down to solving the _ AX

Ta=> _ ‘E
linear system of equations A A{ -AT

called the wo¢ mq}

. These equations are

equations of the least squares problem

Ax>b
Example 5: Find the least squares solution of the system Ax=Db.
1 -1 1] 2 .
A 1 11 b - 1 AT gr \‘ ? ‘
o 11| |o - 0
1 01| |2 AL I
12
AAX=Ab
I I VR R B I ¥ 11 o V|2
o L )
N T | | Xe |21 1) o
o ‘ ‘ s L L)
24 x4 -
L} 0, 1. x|
Y

e - \
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Example 6: The table shows the numbers of doctoral degrees y (in thousands)
awarded in the United States from 2005 through 2008. Find the least squares
regression line for the data. Then use the model to predict the number of degrees
awarded in 2015. Let t represent the year, with t = 5 corresponding to 2005.
(Source: U.S. National Center for Education Statistics)

Year 2005 2006 2007 2008
5 b 1 4
Bzgtzreas' , 52.6 56.1 60.6 63.7
| ATAT b
: ., Lt et =y
e,k 5¢, =5L.C
éu “ lcfo‘l'(ocl:s(oo'(.
S (e, 41626
Lirear Trend / (‘ o, r ¢, 6571
\ 5 . 91‘;" T v | 11 S Co
Azl o | BT\ | Acls e ) ©7IC,
I (vl
| 3
ATAC b

)=yt

1005 e, BN Ei% A (15) = a0 23
[6(4'700]”' [c, 3&9@7% 2o \9 '
:—3) 5.1 (|45 o umeas

hnuee
oL ]Vl ‘V‘“‘w ﬁﬁrz;a%é
- o Le 155249 10 380 doctorald-
e A o
26 V15| 1557. . .




Section 6.1: INTRODUCTION TO LINEAR TRANSFORMATIONS
When you are done with your homework you should be able to

n Find the image and preimage of a function
n Show that a function is a linear transformation, and find a linear

transformation
IMAGES AND PREIMAGES OF FUNCTIONS

In this section we will learn about functions that mwp a vector space

\/ onto a vector space \/\’ . This is denoted by T" U‘) ‘I\J
i L is called the

The standard function terminology is used for such functions

dOMO»in of ’r , and \/\J is called the Codomawn  of
D
T .Ifis vinV , and W in W such that /T(ﬁ) 2 W . W is called
. S
the \ma\% of V_ under T . The set of all images of vectors

inV is called the vranae of T , and the set of all v in V such

/) ‘ 5

of w

is called the .Ia(e\mak%&.

that T(’\al ) =
T:\V-=>W

0
4\05’

"
_.D

Example 1: Use the function to find (a) the image of Vand (b) the preimage of W

ont ” F
T (Vi V,)=(2v, -V, %,Y,) @ =(3,1,2) 5“"‘ P

T ()= (2(1-(8),5, b) = M 3
ra L

So (0,0) 15 T Prl“tmﬁ% of (1,0,¢) wnder T LR

mnd (11,0,6) 15 The imaop of (0,0) wnder T
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DEFINITION OF A LINEAR TRANSFORMATION

Let V and W be vector spaces. The function T :V — W s called a linear

transformation of Gt ) when the following two properties are true

forall uand Vv in V and any scalar C.

s T TEFTE)

> T(ca)- ¢T (3

A linear transformation is O?.Q/((M‘IIOH JPCQS&‘(\/I r\ﬂ

because the same result occurs whether you perform the operations of addition
and scalar multiplication Lefoce or __after applying
the _Jv'm QS ’i’l’am}i_/amwcf | O . Although the same

symbols denote the vector operations in both V and W , you should note that the

operations may be different.

Addifionin \/ Additin in W Scadaw ™ inV Sceadus mult 1 W
TGV ) = F@rIE) T(ex) = € (&)

Example 2: Determine whether the function is a linear transformation.
a. T:R*> R T(xy,z)=(x%1,yH¥l z61)
(z,\,n) T (3+V) ?: T+ TEH)
(,2) 1’[(|,|)|)+(\,L,’;)]3.: (150 288, 580) + (190 80 1 40)
T (2,%,4) z (2,3,4)% (2 1,2)

(1+|,73+l,q+|) Z (4,9,¢) Mf-qow\ wndsor
(54,5 ) # (4,5,¢) addiher

M

A
N

S
)
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(‘ M,f‘ﬂ T(R”)= 0&\)1“—1’0\!5 & \ingow” ‘]'(MS‘FGYMMTO’V\/ \
b. T'M22—>F:_—Tf =a+b+c+d T (A’rﬁ) = T(ﬁ) ’fT(ﬁ‘)}\

Grack o X,b “X & X 6 U" 3‘1‘3 : (14L439) ¥ (S400
/L )
Lef

Ao N, Cop| CHTrIopL 2 16 £ 26
[|51)% DO*L)I/HK% Of&z’xl;al ?L’) %C a g(‘\/

T(A) =T ({oy31(k;. ) T )/ T(eA)- T (cley ])
-1 ([o\wfb];&) = T(LU’HJ]7

= C,G“+Cos‘l+( ﬁb}(a
=(a"+b“ +(Gu+biﬂ*‘(o‘1,+bu)+ (a‘tl"bu) = Q.(Ot Fa Yo +Cn1_5
(C\ ~]—G +a,,.*0‘7,)+(\»..ﬂ°n-”° \'b'ﬂ) = dT(A)\/

THEOREM 6 1: PROPERTIES OF LINEAR TRANSFORMATIONS

Let T be a linear transformation from V into W , where uand Vare in V . Then
the following properties are true.

1. T(S): 6
2. T(-RT):—T(G)
3. T(ﬁ-$)= T(G)—T(G‘)

Proof: LU}G,_\} 6\!
T(@-3) = T (3 + )
=T (B)rT )
= T@) +[-T (3]
T(zi‘)-—f(ﬂ//
4. 1If ,\T: C/:j\"'(zlvci" "—("hvh, then T(V) -:'T (Clsl"- C‘L\?z,f" + Cn-\}an)

= T(Cq\,;g ) "'T(Czj;z,) - +’r(c’n6h)

I
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Example 3: Let T :R® = R® be a linear transformation such that

Tg1,0,0)=:(2,4,—1), T(0.10)=(13,-2), and[T(0:08) = (0,-2,2). Find the

indicated image.

(2,-1,0) = ’rl(l,OJO)Jr(O -1,0) + (0,0 oﬂ

- ‘1 \,0,0)4"-l(O,l}O)%-O(O{O)I)]
= sz(\,o,o)]’r T[-(o/\,o)]),T[O (0,0,\)]
= LT (10,0) =T (o,1,0) +0

2(2 4 -1)- (\,’6,-?_) }o
/I 7 .
= (49,2) ¥ (-),-3,2) (0,0,0) = =[(3,5,0)
THEOREM 6.2: THE LINEAR TRANSFORMATION GIVEN BY A MATRIX

\)

-

Let A be an mxn matrix. The function T defined by
- D
T(V) = AV

is a linear transformation from R"into R

™. In order to conform to matrix
multiplication with an mx n matrix, nx1 matrices represent the vectors in R

and mx1 matrices represent the vectors in R™.

a,vi+ ... +a,V,

a, ... a, ||V
Av=| : . | = : .
_aml a'mn | _Vn ] _amlvl + o +amnvn ]
» \/
Ve hor -
n K \'-Q,C\'m(d n K

184
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Example 4: Define the linear transformation T :R" — R"™by T (V)= Av. Find the

dimensions of R"and R™.
1 Lo\{.mr\r\b

S 5 A hao s}oyz. AL .
( —
A=|-2 4|C% dimension of " 2 -
2 2
dimansion of =5
4 colwmns —
13 -1 0
o A=|0 1 -2 1 1, O
2 1 -4 1

a. Find T(2,4) T(G ,,A?
| 1
A;‘ _Lq \ 2 7 - \Q
-4 T (2 Lq] e
-11 4
’\j 1(.2-;'-‘) -
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T(V) = (-117’17')
b. Find the preimage of (-12,2)

’F(v) PsV

&R
Ei\&\ -

(| 0\*'\ (’ 1 1/’2“:}0) ¢ the prmoge

5 olo wndur T /

"
~ (- =
'r(—\ 0) = ( \J‘Ll )
!
c. Explain why the vector (1,1,1) has no preimage under this transformation.

T(V)=(111) \ 00 . onsishent ‘M{

b{}‘/ _} ) no solufion W""; guw

.y _
W‘Mf Sin AV 2 T(7): 1)

\ 1

a4

-2 1\!
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Example 6: Let T be the linear transformation from P, into R given by the

1
integral T ( p) = _[0 p(x)dx . Find the preimage of 1. That is, find the polynomial
function(s) of degree 2 or less such that T(p)=1.

pG0 = A,k AX Fax
T(p) =1 l
T (o) OSpma»z

| (8
| = (o, +a,%+0,X )dx
2 3\)(‘1‘

(s
| 7 (moxw\ X 4 QX
1 >

| 3\@0+.-‘i0~. ¥—-'3-0\1,)‘(0"’0*°)]

)
] = 6\6“' ‘%0‘1*’30\?—-

x=9

Go = l"'"lial -’%6‘7’

Led 0\1;20»’ 0\,_;9\9

A~ l+oth
a“:- -—?_ﬂu
ne -3

/ +
p(x)> (+arb) ¥ (2a)x F(-2b)x €F,
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Section 6.2: THE KERNEL AND RANGE OF A LINEAR TRANSFORMATION$
When you are done with your homework you should be able to...

n Find the kernel of a linear transformation

n Find a basis for the range, the rank, and the nullity of a linear
transformation

n Determine whether a linear transformation is one-to-one or onto

n Determine whether vector spaces are isomorphic

THE KERNEL OF A LINEAR TRANSFORMATION

We know from Theorem 6.1 that for any linear transformation T \! - \’\J :

the zero vector in \/ maps to the L0 vector in W . That is,

e .s) =
, (0 >0 . In this section, we will consider whether there are other

Y -
vectors N suchthat | ('\7 ) Z O . The collection of all such
ALMM\*S is called the Y\QIN.Q of T . Note that the
-

zero vector is denoted by the symbol O in both \I and \l\] , even

though these two zero vectors are often different. -
J Tn (L , 0~ ( 0,0 )

IY\ Ks/ 3 - (0;0/0)

[R5 ] )
(o For 1x2 meiwo

=
ker(T)={ve VITv =0} 0 - O 0
V and W are vector spaces, T function from V to W 0 O
T is a linear transform/map = homomorphism

(means that T(x+y) = T(x)+T(y), T(a.x) = a.T(x))

DEFINITION OF KERNEL OF A LINEAR TRANSFORMATION

Let T :V — W be a linear transformation. Then the set of all vectors V in V
T [ D =

that satisfy | (V )3 O is called the kermﬂ of T andis

denoted by KQY (TB
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Example 1: Find the kernel of the linear transformation. z

a. T:RP>RT(x,y,2)=(x,0,2)

Sna X=X ¢=0 z=z unaln.r‘r) 60 lﬂ‘lﬂ“t
2220, and y=24 6€ER

b. T:P,— P, T(a, +ax+a,x* +a,x°)=a, +2a,X + 3a,X"

3
T (atax i’a‘ﬁ,x‘b*"‘sx ) = ot LaX *9“.#

o)
= 0,=0,=0
Kee (T) = %00; 0‘0’03
c. )
1%EZ):)I(I;O(x)dx for ?L) px)= 0,y axfax
S(a b oXF0.X )Ax - et “f;\o"‘v

o+ (xrgar vt T

9,7 ay b
[@ -—a +1 7,) (‘”’O *0)] k@((f)
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THEOREM 6.3: THE KERNEL IS A SUBSPACE OF V

The kernel of a linear transformation T :V — W is a subspace of the domain V .

Proof: \ e Ynow Yhed the kex (7) i5 a hmmﬁjsubsd' o¥ \/,E’r‘"m@

\ob U omd v ke vetbors in Yeer (7)), and b ¢ boe o scalar
T(Brv) = TR FT(F)

+ O

NV

—=
-

T(enr) =

(%)

SV

C
ol - oL oL

[
2
= 0

NG

S Ker (T) 15 & subSpace of \{-//

THEOREM 6.3: COROLLARY

Let T:R" — R™ be the linear transformation given by T (X)= AX . Then the

A —_
kernel of T is equal to the solution space of A X =0

THEOREM 6.4: THE RANGE OF T IS A SUBSPACE OF W

The range of a linear transformation T :V — W is a subspace of W .

| T '
w‘“’m 7 >
J N
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THEOREM 6.4: COROLLARY

Let T:R" — R™ be the linear transformation given by T (X)= AX . Then the

Column space of A_ is equal to the r'w'\%,t_ of 1

Example 2: Let T (V)= AV represent the linear transformation T . Find a basis
for the kernel of T and the range of T .

{} T(3)=A7 =0

1 2
0 1 I T I V7% O
A 0\ 6
>R 1y X

VERAE O ﬂﬂ\s]ﬁjcov | ¥7e Cfﬂ

-V, Jf’L\/L’*O 16 Cz(olo)g |
v,z20 so V,=0 B

® A {‘, e ﬂ—i['o 6 ‘/91

g \ \/1,

éboo’io bor Yhe vonge (T7) s %(n,—\,O),(\,L,\)QS
=R
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DEFINITION OF RANK AND NULLITY OF A LINEAR TRANSFORMATION

Let T :V — W be a linear transformation. The dimension of the kernel of T is

called the l’\\A“H’ﬁ of T and is denoted by
( T.) . The dimension of the range of T is called the

rank of T and is denoted by Conk (f)

THEOREM 6.5: SUM OF RANK AND NULLITY

Let T :V — W be a linear transformation from an n-dimensional vector space V
into a vector space W . Then the _ SWM\_ of the d imunsjer.
of the _ y-on %L and Ku’mﬂa is equal to the

dimension of the O\OI‘Y\O:H\ . That is,

(amY_CT) {— ,\] (1)

dimn (nman\ b din (Kecpod) @ d:méa!am.a;L

oot T g, rwfﬁ’o“‘h”\ \)b an mxn MK . Asswme
canke (A) 27 vank (T ) = dim (mnoy (1))
= dim ( tolumn stu)
= yanlc (A )
= Y.
W adoo Knaw N(T) = dim (Ker¢T)) [T 807

= dim (Soludion Ppac of AX =’E§)
= n-—*
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Example 4: Let T :R® = R®be a linear transformation. Use the given informatio
to find the nullity of T and give a geometric description of the kernel and range
of T. 2

T is the reflection through the yz-coordinate plane: "3\

T(x,y,2)=(-%Y,2)

?Cﬂ X e (T #(0,2,0
Y= 9 Jhith is Hua(dzftd«
z=2 Iriple (,ﬂ}u 0“‘{‘)‘“’

\pnge 28—

ONE-TO-ONE AND ONTO LINEAR TRANSFORMATIONS

A

-

) D
If the  ZEAN0 vector is the only vector N such that
N\ =
T(\:)" @) . then T is oW —3o-one . A function
T - \] —>\I\J is called one-to-one when the or.elmmﬁ?/ of

-.A - - -
every W in the range consists of a S\T‘\O\R vector. This is
— -

n

equivalent to saying that ) IS one-to-one |f and only if, forall W and V

in \l T(u) T(d) implies that TA)::\_;.

2)/

Figure ]
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Example 3: Define the linear transformation T by T (X)= Ax . Find ker(T),

nullity (T ), range(T), and rank( ).

2% 95 2% n =5
{3 -2 6 -1 15
A=

3 8 10 —14} ¢ — QL
fggjikglé 4 -4 20
T@): AR) =D

-

N hasyolbe 5% )

2y b -y 19 ﬁVl N
% 77 g |0 ’\U\ VL e 0
7. -% 4y-h 70

q W
= C
NV AR A (st
\ F W —kv, 2O

h 1 s g \(_La -15t6t

\ n -
D ' -1 -\ \

Ker (ﬂ \ = \v, o} -1

Vo, r | ‘\-S (0 i.t(l)'
Vo, O \ 6
S ol L

Kee (1) - SPOLY\ (2 DJ\)O'CD e, i@i |\I(T
(,¢,0,01) ‘




Qﬁf\aL(T) /ﬂ\l M&G\‘\ﬂ?‘l'S m ((&5'(‘%) afe w Thue
Ik and Tnd columns , S0 & basis for he ranae

s G(mA), (2,30

:. rwﬂ?’- (T) = SPME(%M:‘L), (‘2.,3)"5)ﬂ
raml. (1) = L S




THEOREM 6.6: ONE-TO-ONE LINEAR TRANSFORMATIONS

Let T :V — W be a linear transformation. Then T is one-to-one if and only if
-
Kee (1) =30 %
Proof:

5up‘oou’r'\s ghe -0 - one

()= 0 \eo M‘\\\Q one SOWHON L e (1) =3
Nows Suggoss Vee (TY)38 ond T)=T (7).
TE)=TER)-TGE) = 3 oo wnploo I £
15 inYha Yer (T and mud—%ma'()’. Co T =3 Lnche

Onio wt T 1S
oA~ X
THEOREM 6.7NALINEAR TRANSFORMATIONS
e -to-ore .
Let T :V — W be a linear transformation, where W is finite dimensional. Then T

is onto if and only if the (ML of T is equal to the
dimamsion, of W

Proof:
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THEOREM 6.8: ONE-TO-ONE AND ONTO LINEAR TRANSFORMATIONS

Let T :V —- W be a linear transformation with vector spaces V and W ,

of dimension n. Then T is one-to-one if and only if it is ono

Example 5: Determine whether the linear transformation is one-to-one, onto, or
neither.

T:RES>RET(XY)=(x-y,y—x)

Ker (7)) = E(XJQ”‘,TJ&%
<6 3 MITR —qu on
Solukion, so T
19 et one-do -

g
N
—
N
\
7
-
®
p)
o~
—
Hl
—
N

o eans rank (T )
= din(W).

ok (7) # Avm(W)
CREATED BY SHANNON MARTIN GRACEY ) ¥ 7
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DEFINITION: ISOMORPHISM

A linear transformation T :V — W thatis &\ -0 — ¢nL and
N is called an I.SOW\OIP\A:SW\ . Moreover, if V

and W are vector spaces such that there exists an isomorphism from V to W,

then V and W are said to be lsomor'pM (2 to each other.

THEOREM 6.9: ISOMORPHIC SPACES AND DIMENSION

Two finite dimensional vector spaces V and W are ]SO OY?WI <

if and only if they are of the same dl MNIN 518

Example 6: Determine a relationship among m, n, j, and k such that M is
isomorphic to M, .
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Section 6.3: MATRICES FOR LINEAR TRANSFORMATIONS
When you are done with your homework you should be able to...

n Find the standard matrix for a linear transformation

n Find the standard matrix for the composition of linear transformations and
find the inverse of an invertible linear transformation

n Find the matrix for a linear transformation relative to a nonstandard basis

WHICH FORMAT IS BETTER? WHY?
Consider T :R> = R®, T (X, X,, X3 ) = (4%, — X, —=5X;, =2X, + X, + 6X5, X, — 3X;)

and

What do you think?

L 200129 Yo Nead

, u 0 uJ(\'\’L

w Gdapt b Cohﬂpuxiw( Wa-

The key to representing a linear transformation ’r: \l - \J\J by a matrix is

to determine how it acts on a bas) s for \/ . Once you know the

.\YY'\G%,Q- of every vector in the b o0\ R , you can use the
= -
properties of linear transformations to determine -T-(V 2 forany V_in V :
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Do you remember the standard basis for R" ? Write this standard basis for R" in
column vector notation.

. (0 )
v ) 0 0
0 ‘ 1o
B=1{e,e,..e,l= 0 |, O |/ 71
t : 0
oJ Lo - L' -
- -
- — ) e
e.‘ ) &7 7)) n

THEOREM 6.10: STANDARD MATRIX FOR A LINEAR TRANSFORMATION

Let T :R" — R™ be a linear transformation such that, for the standard basis
vectors €, of R",

a‘ll a12 a1n
T(e)=| "2 T(e)=| 2| i Te)=| |
_aml_ _am2_ _amn_

then the Mxn matrix whose N columns correspond to T (&)

is such that T (V)= AV for every Vin R". A is called the standard matrix for T

S T
?rwf'- v '[V. Ny Vg - Un] = v,e,,,uv,,i,_f---’r\i..in
TR)=T(vie t u€ot- - +V,2a)
= Tve)+T (e, ) r--+¥T(ve,)
= V'T(Zl)“' V;_T('éf-.,)’f*\’nT(éfn>
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S /a Q -t 0‘“ ] rvl W -an\’l “- an_v‘l,“' A "- 0\'“\/“ il
A v°© X " Vb- a ,\/. + az'z\"l:} -1 Q.‘n \/ﬂ
My Byg " Pan . = [
L e - , .
[ Oy~ B IV S (B Ot ol

o, Y o'm"

=\ | B Vv, a‘ﬂ' +.. 4V, [Pan

LO‘VM 'G\m-z. 1“.@

=V T(R) +vT(e ) -+l ()
V4

Example 1: Find the standard matrix for the linear transformation T .

T(X,y)=(4x+y,0,2x-3y) - (l o)

\

&
q,o,vﬂ =T (2,) z = (O;])

7 (1,0) = ( A v
) =T (2,)

/r(ozl) - (I"OJ
[ -

4
A =10
L

Stondard W\ X For T

)
o
-5
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Example 2: Use the standard matrix for the linear transformation T to find the
image of the vector V.

T(x,y)=(x+y,x-Y,2x,2y), v=(3,-3)

0Z _

REHOE)

. ________________________________________________________________________________________________________|
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Example 3: Consider the following linear transformation T :

T is the reflection through the yz-coordinate plane in
R*:T(xy,2)=(-x,y,2), v=(2,3,4).

a. Find the standard matrix A for the following linear transformation T .
—_ D - - (] 0 0)
)7 T(1,00)2 (1,0,0) e .00
- = (6,1,0
T (22): T (01,0)-(0,1,0) 2= (%)),

’)/(g) T (0,0,1)= (9,0 1) /—/-\—d/o\-éj}: (0,0,1)

b. Use Ato find the image of the vector Vv

AN -1 09 (s -1

por |-

f(z 54) = (2/5“4)-\

c. Sketch the graph of Vand its image.
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T =-’);Y.(<; |

THEOREM 6.11: COMPOSITION OF LINEAR TRANSFORMATIONS

Let T, :R" > R"™ and T, : R™ = RP” pe linear transformations with standard
matrices A and A,, respectively. The composition T : R" — R” defined by

T (V) =T, (Tl(V)) , Is a linear tr ion over, the standard matrix A
fo@s given by the matrix product A= AA .

_______/-

Proot—
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Example 4: Find the standard matrices A and A" for T =T,oT, and T =T, oT,.

TR >R T(xy)=(xY,Y) SN o) -
T2:R3—>R2,T2(x,y,z):(y,z) Ti (f\) );(\/ > (\!O/O>
Az 5?1 Ao 0 E)T00-0),)
0 ) J2<€‘>:’E(\;O/O) = (O/O)

@ ’T-:-')’ 0T, = ﬂLAt /TL ('éjz,> :");(O/\'IO):(]}O)
- T.&)H-T, (00,1)7 (0,))

DEFINITION OF INVERSE LINEAR TRANSFORMATION

If T,:R" > R" and T, : R" > R" are linear transformations such that for every
V in R", A -
- = -

T[T wd T [1,0)]

then T, is called the nverss of T,, and T, is said to be
1Verhble

**Not every _ L INQGRA transformation has an __jn\/ex $.& Nf
T\ is \nuerho)e , however, the inverse is __ yuni qu}u

-1
and is denoted by _r;
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THEOREM 6.12

Letis T :R" — R"be a linear transformation with a standard matrix A. Then the
following conditions are equivalent.

1. Tis inVMH ble

2. Tisan iSOMOﬁ‘)h‘\bm

3. Ais InverTible

|
If T is invertible with standard matrix A, then the standard matrix for T is

g vy

oYJr
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Example 5: Determine whether the linear transformation T (X, y) = (X + Y, X— y)
Is invertible. 1T itis, find its inverse.

T(E)=TO,0=(0,)
T@E)=T®EY=0,"
|

A= dt(A)=-1-12"L 2O s0 Ais \kerhble
| - B}
-\ ) -l - ,/7— l/_b
A i F:E: -1 l/q,"/z

T (%)= (% 189 2% - 9) -| (3x r29» 2 lﬂj

TRANSFORMATION MATRIX FOR NONSTANDARD BASES

Let V and W be finite-dimensional vector spaces with bases B and B',
respectively, where B = {Vl,Vz,---, Vn} :

IfT:V —>W isalinear transformation such that

11 a12 a1n

a a a,,

[T (vl)]B,: 21 , [T (vz)}B,: 22 o [T (vn)}B,z 2
_aml_ _am2_ _amn_

then the mxn matrix whose N columns correspond to [T (v,)],

aml o amn

is such that{/r (Q)]gz for every -\? in \/ .
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Example 6: Find T (V) by using (a) the standard matrix, and (b) the matrix relative
to B andB’.

T:R°>R* T(x,y,2)=(x-y,y-2), v=(12,3),
B={(111),(11,0),(0,11)}, B'={(1,2),(L1)}
D TE)=T(,0,0) =(,0) A :II -1 0}
T (2:)-T(0p,0) €1, 0 1 -l
T (25)-T (20,07 (071)

AV -[io ’1\ —O\EL?\'I {: ‘\1 ]T(‘)zﬁ) i ("’—‘ﬂ

3
DTG = (0,0) =00,2)H00,)) _fo s 1
>T (,1,1@:(011); 1 (v2) =\ (1, AZ|lo-1-1

T (0,0))" ('),0)= |(V2) -2 1)
(),2,%)= e, (1,10 ke (1, V 0) FCq (o))

v ol 10 | 0 9| L
) ) 1|2 | —s|o o)
10 )| 5 go ‘11

[-\7]52 70 e 0
C’T—(F\T )}Qz ) A{v]g#—? E)j -‘\ '}L] fll_J ] [:_ l]
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Example 6: Let B = {ezx, xe?*, x’e ZX} be a basis for a subspace of W of the space

of continuous functions, and let D, be the differential operator on W . Find the
matrix for D, relative to the basis B.

1 X
e.z’tf e 4 Oxﬂu+0x2e,z-x"’b>‘(€' )- 2" +O><£. +'

v X 50, (xe )=l 1 2xe” +Bx e
’Xbb{ O& T xe +0’L X

T 2 Oe +Oxe/¢x+><0 - Dy (x Lx)'Os*Z’“' t

"L?a(

Le - fllol‘\
= =O?—'Z
[T]B A H

( /

. ________________________________________________________________________________________________________|
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Section 6.4: TRANSITION MATRICES AND SIMILARITY
When you are done with your homework you should be able to...

n Find and use a matrix for a linear transformation
n Show that two matrices are similar and use the properties of similar
matrices

A classical problem in linear algebra is determining whether it is possible to find a

basis E such that the matrix for T relative to E IS

diaagnal
J
1. Matrix for T relative to B : A
i
Matrix for T relative to B': A

W N

Transition matrix from B to B':

Transition matrix from B'to B : ﬂ
e

\ (lbosts 6)

¢ R,
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Example 1: Find the matrix A’relative to the basis B “ !
B > %‘0):(0') ?AF

(
T:R> > R?, T(x y) (x-2y,4x), B'={(-2,1).( 11)} 4P [6 6|
687 & UL_] | temeas 'rfa7='m,o)’
O\ l T(E:p):’l'(o))-, 0

0

o-[1) o 2 -] 2] e
=P AR ["W YR

Example 2: Let B = {(1,—1),(—2,1)} and B'= {(—1,1),(1,2)} be bases for R?,

2 1
[V], =[1 -4] ,andlet A= {O _J be the matrix for T : R> - R? relative to

\i

B.
a. Find the transition matrix P from B

"to B.

210
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_) -S -t =) Sy R ]
2 [O - J F - [ 19) ‘1/5 ﬁ - [ -
b. Use the matrices P and A to find [V and VEL Bwhere

[VI, =2 4] Losaws hfind%uimagmﬁ v wndes Trelchige +o B
R A (O P

[;2}5“] z)['r(ﬁ)] —-f\L\:}J

lol \L glven N o(\:) frab\cm
|2 rAp

= TG A n \ 9
? ""] 5 z | - | 5 :{ -
A :[ '/BJ[O"']J 0 -3 0 \]

g 13

DEFINITION OF SIMILAR MATRICES

For square matrices A and A’of order n, A’ is said to be similar to A when
there exists an invertible matrix P such that A'=P AP
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THEOREM 6.13

Let A, B, and C be square matrices of order n. Then the following properties

are true.
1. Ais_ Similar to A
2. If Ais similar to B, then 6 is Jim lar to A
3. If Ais: similar to B and B is similar to C, then A is
Sim) lar to C
Proof: o -
AT AL (T, ie s oonimvecst)
-1 - -\ ) -V 0
2)PpP £P'BPF Lt @=F than Q =F.S
- | = -
PAP =T BTn B=QA3. /
PAP - B 3) Leff fo Studet &
Example 3: Use the matrix P to show that A and A’ are similar.
1 0 O 2 0 0 2 0 0 . | o O
P={1 1 0|A=/0 1 0| A'=|-1 1 O dD:,\IO
1 1 1 0O 0 3 2 2 3 o -l |
/.7 -
A'- PTAP

20 07l7\(z 00 %&0'
_|'o:—'|lo

225 15
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DIAGONAL MATRICES
Diagonal matrices have many COrn'pod' a:h@’hﬂ&_ advantages over

nondiagonal matrices.

K
d, 0 - 0 E’J_ ok e 0
5 0 d, -~ 0 o _ 0 d, - O
0O 0 - d 0 o .. (_Jn_K
Also, a diagonal matrix is its own ‘l‘(ﬁﬂSPOSQa . Additionally, if all

the diagonal elements are nonzero, then the inverse of a diagonal matrix is the

matrix whose main diagonal elements are the ¢ c_ipromQ"’ of
corresponding elements in the original matrix. Because of these advantages, it is

important to find ways (if possible) to choose a basis for \/ such that the
"I’f(i\ﬂ Svcormoi’ror\ matrix is dlaqor\o&

% Example 4: Suppose A is the matrix for T :R® — R3 relative to the standard
pﬂﬂf gsis. Find the diagonal matrix A" for T relative to the basis B’

T‘f,’nqb\\lmg 5 0,0, G0, ()T A r,fg;_g;},]
l/’g,f 1
B= 5(10,9),(0,1,0), (0,00}
O

[@xej [In,ﬁ]’*[
(¢'18] = [In: ] o ['/z /@

‘:P”A i 6
A w0 \[3 -t =2 || ',",‘ - 'o ; o ||2D
LR R | AT B | ISP

S ~l 1
0 7y t/?./ i/‘L | /e ]

o c-—
Q-—
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Example 5: Prove that if A is idempotent and B is similar to A, Then B is

idempotent. (An nxn matrix is idempotent when A= A? ).

Proof: Tl Plan Show thah = 67'
B = P-\A‘O , ? 1S AN im)LA"\\o\& mM’Yix o% ov dex n

. ________________________________________________________________________________________________________|
214
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Section 7.1: EIGENVALUES AND EIGENVECTORS
When you are done with your homework you should be able to...

n Verify eigenvalues and corresponding eigenvectors

n Find eigenvectors and corresponding eigenspaces

n Use the characteristic equation to find eigenvalues and eigenvectors, and
find the eigenvalues and eigenvectors of a triangular matrix

n Find the eigenvalues and eigenvectors of a linear transformation

THE EIGENVALUE PROBLEM
One of the most important problems in linear algebra is the eigenvalue problem.
When A isannxn, do nonzero vectors X in R" exist such that AX is a

Scalar multiple of X ? The scalar, denoted by A (lambda ), is

called an Jiswd&\% of the matrix A, and the nonzero vector X is

called an __¢) 3 envVec Y0r of A corresponding to 4.

[ 1 az=1R 2

A ,':;K A T‘F )\i: '—Z,X

A

v
A
v

N\ >0 A< O

v v
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DEFINITIONS OF EIGENVALUE AND EIGENVECTOR

Let A be an Nxn matrix. The scalar A is called an ,qigmwﬂ}& of

. > -
A when thereisa nNoNZef vector X such that A)t = )\ X .The

vector X is called an JiﬁW@O’}o( of A corresponding to 4.
*Note that an eigenvector cannot be ’C_)‘ . Why not?
— —
AX = AX
As =270
—_— _ —_
0O =0

Example 1: Verify that 4, is an eigenvector of A and that X; is a corresponding
eigenvector.

A:{_Z 4}, =2, % =(11), 4, =-3, x, =(-4,1)

L1 o\‘dl“*
¢ 3 g . N
X =)\—)? (LM AX,=M, X<
AX| A U}V)q{,\ Zq 2 y
- )7 LA 29\ L 2|7
E? 1_:)\'Y|] 3 lll\]‘:) 3 ‘]

—
N
]
>
g
i‘-—-
G
)
-
N
O
)
\

~
if::(t 1)

) ]
'S an e\oenveUAor of
A cofl’p,gpondz}ng VO
W e,ijm\/o&uﬂ— 2L

R — -
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Example 2: Determine whether Xis an eigenvector of A.

-3 10
A:
o

a. X=(4,4) A'i 2 AX

-3 10104 |- . Y : - . |
E S A e

o r="T
X=(-8,4 N SN
PR Y s AR .
4 03 -31 ~gA (Y AND UAS
223 AL SRR
) 9

CREATED BY SHANNON MARTIN GRACEY 217



THEOREM 6.11: EIGENVECTORS OF 4 FORM A SUBSPACE

If A isan nxn matrix with an eigenvalue 4, then the set of all eigenvectors of
A, together with the zero vector

gx_:'f_ )'S mdngm U‘W%O %-6%

is a subspace of R". This subspace is called the e\ QNSP AL of 1.
G !

Example 3: Find the eigenvalue(s) and corresponding eigenspace(s) of A.

a=ls ] AV = AT, V= (X 9)
X :AE_
) l

]:)\[Xzﬁ éoaﬂ
) ¥

THEOREM 7.2: EIGENVALUES AND EIGENVECTORS OF A MATRIX

Let Abe an Nnxn matrix.

1. An eigenvalue of A is ascalar A such that v/]et ()\I’A) - O

2. The eigenvectors of A corresponding to A are the O0NZ/ O

AN -
solutions of ()\I—A )X = O

CREATED BY SHANNON MARTIN GRACEY 218



* The equation _(3& ()\I"“PS) = O s called the c,ho«rac)rzri Sﬁc
,Q,ﬁud'im of A.When expanded to polynomial form, the

Lo n-\
polynomial dﬂ;()l*ﬁ)z )\m+cn-l>\ k- -+C,>\ ¢,

is called the Ch_@,ra( }\',ef‘l _‘>‘h C ‘pa\ jr\ow{\ a.Q-' of A.This

definition tells you that the g4 9U\V0~QN/3 of an nxn matrix A

correspond to the _y 0ot S of the characteristic polynomial of A.

Example 4: Find (a) the characteristic equation and (b) the eigenvalues (and

corresponding eigenvectds) of the matrix. r — 7
3 2 1 A 0 O A A"‘Z-, -z - A

I-A-|¢ 3
oo 27|, A O )>\ ? e PR X2

020 I O A O -2 N X, |

-
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THEOREM 7.3: EIGENVALUES OF TRIANGULAR MATRICES

If Ais an nxn triangular matrix, then its eigenvalues are the entries on its main

d i a“ﬁ)or\o.»Q

Example 5: Find the eigenvalues of the triangular matrix.

-5 0 O

3 70 _ ) )
4 -2 3 )\l‘-b/‘)\"ﬂf)\'f‘ >
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EIGENVALUES AND EIGENVECTORS OF LINEAR TRANSFORMATIONS

A number 1 is called an 2l azm\raﬂwb of a linear transformation
. v >
‘ - \J% W when thereisa pnoNZ2UAO0 vector A such that

— RN ]
) Gi) = )\ X . The vector X is called an 9.1%&4’\\(2,%( of T

corresponding to 4, and the set of all eigenvectors of 1 (with the zero vector) is

called the ,ngzns?mu_, of 1.

Example 6: Consider the linear transformation T : R" — R"whose matrix A
relative to the standard basdis given. Find (a) the eigenvalues of A, (b) a basis
for each of the corresponding eigenspaces, and (c) the matrix A" for T relative to
the basis B', where B’ is made up of the basis vectors found in part b).

6 2} XL -A =Y\“’ “7’} 3 =\
)

A:LS 1 -2 ¥y )
S —_
&) Find A2 L) (Aj‘_—h)x = O
dar (A1-A) = O 220 [c *7/]&"‘] - %
M) 6 = © SR |
ANING - = L‘j‘%"?}’ ﬂe o‘/g’,]%
AN V4 20
)\‘;O)Az..::‘_7 %lﬂi‘:’%’xz

x?’:?yt ))(l.’.'t
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Section 7.2: DIAGONALIZATION
When you are done with your homework you should be able to...

n Find the eigenvectors of similar matrices, determine whether a matrix A is
diagonalizable, and find a matrix P such that P AP is diagonal

n Find, for a linear transformation T :V —V , a basis B for V such that the
matrix for T relative to B is diagonal

DEFINITION OF A DIAGONALIZABLE MATRIX

An nxn matrix A is diagonalizable when A is similar to a diagonal matrix. That

is, A is diagonalizable when there exists an invertible matrix f’ such that
-1
P A? is a diagonal matrix.

THEOREM 7.4: SIMILAR MATRICES HAVE THE SAME EIGENVALUES

If A and B are similar nxn matrices, then thejhave the same

2. an.Qu\W

Proof:
o 1

. ________________________________________________________________________________________________________|
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Example 1: (a) verify that A is diagonalizable by computing P*AP , and (b) use
the result of part (a) and Theorem 7.4 to find the eigenvalues of A.

At 3] e [Pl e \h-‘hil
-1 5 11 /2 )

7

gap =D — [w]: D

J 4

THEOREM 7.5: CONDITION FOR DIAGGNALIZATION

An nxn matrix A is diagonalizable if and only if it has n ',QileOULQf)

\n Q-Qf\d.ud' eigenvectors.

Proof:

]‘(\/’YM

. ________________________________________________________________________________________________________|
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Example 2: For each matrix A, find, if possible, a nonsingular matrix P such
that P AP is diagonal. Verify P AP is a diagonal matrix with the eigenvalues on
the main diagonal.

Ay o O
Jray e[
B O -z Nt
0 2 2
=
R _ =0
Alvq)AZ$A3=L )\1""' ()\I A)X 0
/ﬂ &O o O ]Lt]q[@}
T 22 0 7)o
S (1)) and (0,0,) 0 -z ¥ ¥
Me axgamvectors Coﬂ’@sa?md ) ) 6 ) |2
lﬂ9‘\'0 )\=4})\=Z’(’QSRCH\}QB. 5‘8 '0’5 )
J;naaomj (4 ,Qir\narlcj X —x,-O
: ‘ \ 3
N perdlent u%ﬂn\fecbﬁj Xy =X 3>
b:j’]-hm I_leA iSﬂO+ xl-:t)x'z,:-b) 3“‘b
dlaﬁd‘)og‘%a)l)lfe : -5?; = ¢ :] Q‘: Czt(\/l}z):teis
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STEPS FOR DIAGONALIZING AN nxn SQUARE MATRIX

Let A be an NxNn matrix.

S 0D N
1. Find n linearly independent eigenvectors _ P @ . -... P for
LI 2 4 ™
A (if possible) with corresponding eigenvalues A o Az )ty An

If nlinearly independent eigenvectors do not exist, then A is not

diagonalizable.

2. Let P be the nxn matrix whose columns consist of these eigenvectors.
Y Y — l
rhatis, P =18 Pu " P

3. The diagonal matrix D - P AP will have the eigenvalues

A ) )\L > ) An on its main 0\}.0\36‘11011 (and

ZL£0S elsewhere). Note that the order of the eigenvectors used to

form P will determine the order in which the eigenvalues appear on the main

0410&"\0“0&\ of
\ 2 00 '0’
D= AC =l0 20
O
O o - O)\/J
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THEOREM 7.6: SUFFICIENT CONDITION FOR DIAGONALIZATION

If an NxNmatrix A has N dij‘}‘ﬁlr\(ﬁ' eigenvalues, then the
corresponding eigenvectors are J(W*?j lndﬂ?xu\m
and A is dio&asonaQith)/QL
Proof:

i ol
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Example 3: Find the eigenvalues of the matrix and determine whether there is a
sufficient number to guarantee that the matrix is diagonalizable. /_\

A* E (2)} Tjiﬂq A 1S Ariongulor | The .Q,{%ﬂm/aﬁm
ace ) =x, 72 . "Sine thueis only \distinct

ﬁrgm\/a&wl- , IS ot o{&aaonox@}yblg

Example 4: Find a basis B for the domain of T such that the matrix for T
relative to B is diagonal.

T:R° >R :T(x,y,2)=(-2x+2y-32,2x+y—-62,—-x—2Y)

. ________________________________________________________________________________________________________|
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Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION
When you are done with your homework you should be able to...

n Recognize, and apply properties of, symmetric matrices

n Recognize, and apply properties of, orthogonal matrices

n Find an orthogonal matrix P that orthogonally diagonalizes a symmetric
matrix A

SYMMETRIC MATRICES

Symmetric matrices arise more often in _QP,P Ii ahewn than any

other major class of matrices. The theory depends on both

s 3mr~hta, and _aﬁggﬂoﬂr’n_g . For

most matrices, you need to go through most of the diagonalization goa.oo

to ascertain whether a matrix is J:WM)M . We learned about

one exception, a imjhﬂar matrix, which has g!ﬁdﬂw

entries on the main Jiago'nml . Another type of matrix which

is guaranteed to be w is a Wr‘c-

matrix.

DEFINITION OF SYMMETRIC MATRIX

A square matrix A is _59m_mdri(- when it is equal to its
T
-}—rahsrds.e_ . AzA
Example 1: Determine which of the matrices below are symmetric.
6 5 4 (1 2 3 4]
@—25@:510(::321@:2710
> 1| ’ 1 2 3 3 1 7 2
4 0 -1
4 0 2 5
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Example 2: Using the diagonalization process, determine if Ais diagonalizable. If
so, diagonalize the matrix A .

e )
|-1 5

[! G _, )
s AEAZLT 118
InL-A= (A-O(-5) ] A S =
O = A‘-- l\A ,‘, z'q i:[ﬂ 1-sqrt(5))/2-6 1; 1 (11-sqrt(5))/2-5]
A= NEEeT 1o s .
T ~D-61% 1,
rref(A)
& ans = . )
A:: l-'-:—"E 1.00000 -0.61803 xiio' (p\ﬂ-tf’x’z t
2 0.00000 0.00000 N
; R
A= =T gy X, %(MI&L;\,) teR
2 * N
JYPLEALIDN s P =(¢3,!)
P = c.c 1145
B PIT PR S o
CT - | S g
Z
0.6y~ LI . O‘Fﬂ 0-\7}\
0 D o i=[(11+sqn(5))f2-s 1; 1 (11+sqrt(5))/2-5]
' =
0.61803 1.00000
1.00000 1.61803 )
pap |17 ¢ X, F 16y, =0
0 b.LIY 100000 1.61803 x,=TLeIt X, 7t
0.00000 0.00000
L %(lugtt)itéf&i
B P o= (-6, N
From 0ctave: D=
4.3820+00 -3.3989¢-05 Nete - h\hn We -f-aand 4 f(f of gg(d\

3.3989e-05 6.6180e+00

MNI-Al e nI nput the 4.4 and
the 6.6 inst submch'ﬁ He
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THEOREM 7.7: PROPERTIES OF SYMMETRIC MATRICES

If A isan nxn symmetric matrix, then the following properties are true.
1 Ais diaﬁondinpb&
2. All WVW of A are uaJL

3. If Lisan __&'ugmwa&w- of A with multiplicity _¥_, then

A has_ K linearly 'Moll.PmM' eigenvectors. That is, the

M‘bﬁc& of 1 has dimension E .

Proof of Property 1 (for a 2 x 2 symmetric matrix):

™ FA

. ________________________________________________________________________________________________________|
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Example 3: Prove that the symmetric matrix is diagonalizable.

>

Il
O 9 D
O 9 D
O 9 D

. ________________________________________________________________________________________________________|
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Example 4: Find the eigenvalues of the symmetric matrix. For each eigenvalue,
find the dimension of the corresponding eigenspace.

2 -1 -1 r)\}:z' i l )
A=[-1 2 a1 ARTAZLG g |
-1 -1 2 J:. l )\_LJ
doF (\I-A) = O |
A SR It =0
O-D T el e

CE) (SR (oo ()] =0

<)\’7-)3_ (%‘1)"(2\*2/\ ¥y oY) —(%..7,> =0

()\-‘Lf”’ 2 (n2)x L = ©

()\_Z)T’..?;)\ yo + 17

\ \ Z 0 3
)()\f(-ﬁ’w (V) 13 (W) () N (2) ~5A x%
W WA =T AR g =0

NANE TP

MN-iaia) = o

Azo or (N3 =©
X -

— L
Alz O} }\L:g

The dinnensier o Wd@mspau cof‘(eﬁfdndl nj 4o )\;:()5'1-5 g
\) 1 )\?:: ].5

= O

I (! il ([ J'l

_

CREATED BY SHANNON MARTIN GRACEY 232



DEFINITION OF AN ORTHOGONAL MATRIX
A square matrix P is J"‘H’l ?/Wd when itis MerTible

- | T
and when P =7

THEOREM 7.8: PROPERTY OF ORTHOGONAL MATRICES

An nxn matrix P is orthogonal if and only if its column_

vectors forman  oc¢+honormad set.

Proof:

Ih toit
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Example 5: Determine whether the matrix is orthogonal. 1T the matrix is
orthogonal, then show that the column vectors of the matrix form an orthonormal

set.
4 4 3] AA = 1,
_E g Az’ - 1 X
. 2 1 Z | 4 O 3 So As i”\ﬁﬂﬂb&
5°%8 oy 0 |=2q, adA
) ) - 3 _ LT
A=A
d o | S i
s5ine A=A and A5
g 6 2/s invachble | Ais orﬂno?om.o.
ﬁi: [@? ] )? =1 f—; =| 9
s g | s
S0 6% .
b f, - BN\ S, B e it veckr
)'3 i
N 0 n?&”: \
T The colwmn wchors of A leor%om(@

/
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THEOREM 7.9: PROPERTY OF SYMMETRIC MATRICES

Let A be an nNxn symmetric matrix. 1f A4, and 4, are dié)I'iHC?)'

eigenvalues of A, then their corresponding _gigqu,drorﬁ X, and X,

are O(’M\OO\OOG_Q
Proof: juwosn 15 &n nxn sgmrrvirlc makrixc wth disninet 2igenvadweo
A ond xo . et X and xz, be agmueoforg corresjaard:j
to X, ard X, , fesprhiely.
A(20%) = (0R0) X,
-(AX.) .
- (AR,
. (RTAT) o
T P\)'?‘
(AXD
% (h A
%L(x.x ).
ina M, (X %) = A (XD

(5393, (R O
SZ. )()\.—ALD =0

)‘|j)\b Sé )] (;(:Q ) O
X, nd X, axe orﬂmamﬂ. J

A

\\

\

F] L]
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THEOREM 7.10: FUNDAMENTAL THEOREM OF SYMMETRIC MATRICES

Let A be an nxnN matrix. Then A is O:’anqma@zw

o
ajlmﬁmaﬂ:@ able and has _ (ea_ eigenvalues if and only
it Ais__Symmaofric

Proof:

o 1
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STEPS FOR DIAGONALIZING A SYMMETRIC MATRIX

Let A be an NnxN symmetric matrix.

1. Find all _o .'2mvaﬁwp of Aand determine the
mw”'['plr‘ U {'_'/) of each.
2. For .a,aok eigenvalue of multiplicity }13_1 find a u.nrf'
eigenvector. That is, find any ¢ iﬁﬂh\/ac‘f'or and then
NnormM &-QV‘;—,\L It.
3. For __{adh eigenvalue of multiplicity k.3 L, find a set of
K Al'r\m//://} }no}@pam(mj'
eigenvectors. IT this set is not Offhonormo\ﬁ’ , apply the
Cram =S O d T orl'f\onorrmﬁ‘igaﬁ&"\*
process.
4. The results of steps 2 and 3 produce an /)f‘ﬁ’ldﬂ@({ﬂGﬂ. set of

N eigenvectors. Use these eigenvectors to form the Colum S of

-] _
i . The matrix P A P ~ D will be
(7{1'0\36’“0\/04 . The main entries of D are the

QBJM\/GLQM of A .
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Example 5: Find a matrix P such that P’ AP orthogonally diagonalizes A.Verify
that P" AP gives the proper diagonal form.

y = T

0 1 1 N o~ -

A=|1 0 1 /\‘1"/“‘:4,\—'\

140 AN,
deﬁ(/\l’ﬁ) = 0

ACA=D+ (A0 =052 =9
N-A-a-1-1=-A =9

N-3x-2 0
A=) (el 20
,\L: 2,/ N O .
T e S P o s
0607 X ¥y, tXs= O
R X = X -Xy=-5-T

W

- _ -1\
X, S[R :] Jr‘t[o }
0 s
\ \
("/ﬁ"/ﬁ,f‘)) ) (“1/42,0/ /ﬁ")

- A | 10-\
%ZL -1z~ -r%{'OI-i
-1 -7 g a o

X “‘K3=o“>xl=:x3:_c
/Lriz’/m '/ﬁ X _-}(s_-,-o,.axz s)(z:t
+

-

—Q
o 1D
g N
O I~
(us)
T | -
= -
ey
:%-—-QQ
=z
()
A
3
m
>y <V
I
' -

o - (g e, V2 ) =%



Example 6: Prove that if a symmetric matrix A has only one eigenvalue A, then
A=11.

fj? [ﬁJf A be & 53mwr’f{ic ma‘»’rri;( \;\)l‘H’\ Oﬂ(}j ]_wadu,c,)/\,
Since A TS S'jmm‘}‘(\'c, 'H\Q QXjS‘fS o~ PQAC}\'H\“-T P’IA? =D
Whave D IS & d\maonaj Mo .

PP 'ap €D

aeP = PDF
A:PDP

A= P (TP

Az PAPTT
A- PO AT

A:AL gy

-

. ________________________________________________________________________________________________________|
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Section 7.4: APPLICATIONS OF EIGENVALUES AND EIGENVECTORS
When you are done with your homework you should be able to...

n Find the matrix of a quadratic form and use the Principal Axes Theorem to
perform a rotation of axes for a conic and a quadric

QUADRATIC FORMS

Every conic section in the xy-plane can be written as :

I T the equation of the conic has no xy-term ( ), then the axes

of the graphs are parallel to the coordinate axes. For second-degree equations

that have an xy-term, it is helpful to first perform a of

a-c¢
axes that eliminates the xy-term. The required rotation angle is €0t26 = o

With this rotation, the standard basis for R? , IS

rotated to form the new basis

v

A
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Example 1: Find the coordinates of a point (X, y) in R’ relative to the basis
B’ ={(cos0,sin@),(-sin@,cos0)}.

ROTATION OF AXES

The general second-degree equation ax” +bxy +cy”+dx+ey+ f =0 can be
written in the form a'(X')" +c'(y')" +dX'+ey'+ f'=0 by rotating the
coordinate axes counterclockwise through the angle 6, where 6 is defined by

a
cot26 = PR The coefficients of the new equation are obtained from the

substitutions X =X'cos@ —y'sin® and y = x'sinf + y'coséo .

. ________________________________________________________________________________________________________|
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Example 2: Perform a rotation of axes to eliminate the xy-terms in

5X2 —6xy +5y% +14+/2x - 24/2y +18 = 0., Sketch the graph of the resulting
equation.

A
v

. ________________________________________________________________________________________________________|
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and can be used
to solve the rotation of axes problem. It turns out that the coefficients a’ and ¢’
are eigenvalues of the matrix

The expression is called the

form associated with the quadratic equation

and the matrix is called the of the

form. Note that IS . Moreover, will be

If and only if its corresponding quadratic form has

no term.

Example 3: Find the matrix of quadratic form associated with each quadratic
equation.

a. X' +4y*+4=0

b. 5X% —6Xy +5y2 +14+/2x - 242y +18=0
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Now, let's check out how to use the matrix of quadratic form to perform a
rotation of axes.

X
Let X = .
© M

Then the quadratic expression ax’ + bxy + cy2 +dx+ey+ f can be written in
matrix form as follows:

It , then no IS necessary. But if

, then because __ is symmetric, you may conclude that there
exists an matrix __ such that
is diagonal. So, if you let

then it follows that , and
The choice of must be made with care. Since Is orthogonal, its
determinant will be . If Pis chosen so that |P|=1, then P will be of

. ________________________________________________________________________________________________________|
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the form

where 6 gives the angle of rotation of the conic measured from the

X-axis to the positive x’-axis.

PRINCIPAL AXES THEOREM

For a conic whose equation is ax” +bxy+cy’+dx+ey+ f =0, the rotation given

by eliminates the xy-term when P is an orthogonal

matrix, with |P|=1, that diagonalizes A. That is

where 4, and A, are eigenvalues of A. The equation of the rotated conic is given

by
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Example 4: Use the Principal Axes Theorem to perform a rotation of axes to
eliminate the xy-term in the quadratic equation. Identify the resulting rotated
conic and give its equation in the new coordinate system.

5x2 —6xy +5y% +14/2x - 2+/2y +18 =0
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